On the geometry of frame bundles
Archivum mathematicum, Tome 48 (2012) no. 3, pp. 197-206 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $(M,g)$ be a Riemannian manifold, $L(M)$ its frame bundle. We construct new examples of Riemannian metrics, which are obtained from Riemannian metrics on the tangent bundle $TM$. We compute the Levi–Civita connection and curvatures of these metrics.
Let $(M,g)$ be a Riemannian manifold, $L(M)$ its frame bundle. We construct new examples of Riemannian metrics, which are obtained from Riemannian metrics on the tangent bundle $TM$. We compute the Levi–Civita connection and curvatures of these metrics.
DOI : 10.5817/AM2012-3-197
Classification : 53A30, 53C10, 53C24
Keywords: Riemannian manifold; frame bundle; tangent bundle; natural metric
@article{10_5817_AM2012_3_197,
     author = {Niedzia{\l}omski, Kamil},
     title = {On the geometry of frame bundles},
     journal = {Archivum mathematicum},
     pages = {197--206},
     year = {2012},
     volume = {48},
     number = {3},
     doi = {10.5817/AM2012-3-197},
     mrnumber = {2995872},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2012-3-197/}
}
TY  - JOUR
AU  - Niedziałomski, Kamil
TI  - On the geometry of frame bundles
JO  - Archivum mathematicum
PY  - 2012
SP  - 197
EP  - 206
VL  - 48
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2012-3-197/
DO  - 10.5817/AM2012-3-197
LA  - en
ID  - 10_5817_AM2012_3_197
ER  - 
%0 Journal Article
%A Niedziałomski, Kamil
%T On the geometry of frame bundles
%J Archivum mathematicum
%D 2012
%P 197-206
%V 48
%N 3
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2012-3-197/
%R 10.5817/AM2012-3-197
%G en
%F 10_5817_AM2012_3_197
Niedziałomski, Kamil. On the geometry of frame bundles. Archivum mathematicum, Tome 48 (2012) no. 3, pp. 197-206. doi: 10.5817/AM2012-3-197

[1] Abbassi, M. T. K., Sarih, M.: On natural metrics on tangent bundles of Riemannian manifolds. Arch. Math. (Brno) 41 (1) (2005), 71–92. | MR | Zbl

[2] Baird, P., Wood, J. C.: Harmonic morphisms between Riemannian manifolds. Oxford University Press, Oxford, 2003. | MR | Zbl

[3] Benyounes, M., Loubeau, E., Wood, C. M.: Harmonic sections of Riemannian vector bundles, and metrics of Cheeger–Gromoll type. Differential Geom. Appl. 25 (3) (2007), 322–334. | DOI | MR | Zbl

[4] Benyounes, M., Loubeau, E., Wood, C. M.: The geometry of generalised Cheeger-Gromoll metrics. Tokyo J. Math. 32 (2) (2009), 287–312. | DOI | MR | Zbl

[5] Cordero, L. A., de Leon, M.: Lifts of tensor fields to the frame bundle. Rend. Circ. Mat. Palermo (2) 32 (2) (1983), 236–271. | DOI | MR

[6] Cordero, L. A., de Leon, M.: On the curvature of the induced Riemannian metric on the frame bundle of a Riemannian manifold. J. Math. Pures Appl. (9) 65 (1) (1986), 81–91. | MR

[7] Dombrowski, P.: On the geometry of the tangent bundle. J. Reine Angew. Math. 210 (1962), 73–88. | MR | Zbl

[8] Kowalski, O., Sekizawa, M.: Natural transformations of Riemannian metrics on manifolds to metrics on tangent bundles. A classification. Bull. Tokyo Gakugei Univ. (4) 40 (1988), 1–29. | MR

[9] Kowalski, O., Sekizawa, M.: On curvatures of linear frame bundles with naturally lifted metrics. Rend. Sem. Mat. Univ. Politec. Torino 63 (3) (2005), 283–295. | MR | Zbl

[10] Kowalski, O., Sekizawa, M.: On the geometry of orthonormal frame bundles. Math. Nachr. 281 (2008), no. 12, 1799–1809 281 (12) (2008), 1799–1809. | DOI | MR | Zbl

[11] Kowalski, O., Sekizawa, M.: On the geometry of orthonormal frame bundles. II. Ann. Global Anal. Geom. 33 (4) (2008), 357–371. | DOI | MR | Zbl

[12] Mok, K. P.: On the differential geometry of frame bundles of Riemannian manifolds. J. Reine Angew. Math. 302 (1978), 16–31. | MR | Zbl

Cité par Sources :