On $\mu $-singular and $\mu $-extending modules
Archivum mathematicum, Tome 48 (2012) no. 3, pp. 183-196
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $M$ be a module and $\mu $ be a class of modules in $\operatorname{Mod}-R$ which is closed under isomorphisms and submodules. As a generalization of essential submodules Özcan in [8] defines a $\mu $-essential submodule provided it has a non-zero intersection with any non-zero submodule in $\mu $. We define and investigate $\mu $-singular modules. We also introduce $\mu $-extending and weakly $\mu $-extending modules and mainly study weakly $\mu $-extending modules. We give some characterizations of $\mu $-co-H-rings by weakly $\mu $-extending modules. Let $R$ be a right non-$\mu $-singular ring such that all injective modules are non-$\mu $-singular, then $R$ is right $\mu $-co-H-ring if and only if $R$ is a QF-ring.
DOI :
10.5817/AM2012-3-183
Classification :
16D10, 16D70, 16D99, 16S90
Keywords: $\mu $-essential submodule; $\mu $-singular module; $\mu $-extending module; weakly $\mu $-extending module
Keywords: $\mu $-essential submodule; $\mu $-singular module; $\mu $-extending module; weakly $\mu $-extending module
@article{10_5817_AM2012_3_183,
author = {Talebi, Yahya and Hamzekolaee, Ali Reza Moniri},
title = {On $\mu $-singular and $\mu $-extending modules},
journal = {Archivum mathematicum},
pages = {183--196},
publisher = {mathdoc},
volume = {48},
number = {3},
year = {2012},
doi = {10.5817/AM2012-3-183},
mrnumber = {2995871},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2012-3-183/}
}
TY - JOUR AU - Talebi, Yahya AU - Hamzekolaee, Ali Reza Moniri TI - On $\mu $-singular and $\mu $-extending modules JO - Archivum mathematicum PY - 2012 SP - 183 EP - 196 VL - 48 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2012-3-183/ DO - 10.5817/AM2012-3-183 LA - en ID - 10_5817_AM2012_3_183 ER -
Talebi, Yahya; Hamzekolaee, Ali Reza Moniri. On $\mu $-singular and $\mu $-extending modules. Archivum mathematicum, Tome 48 (2012) no. 3, pp. 183-196. doi: 10.5817/AM2012-3-183
Cité par Sources :