On $\mu $-singular and $\mu $-extending modules
Archivum mathematicum, Tome 48 (2012) no. 3, pp. 183-196 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $M$ be a module and $\mu $ be a class of modules in $\operatorname{Mod}-R$ which is closed under isomorphisms and submodules. As a generalization of essential submodules Özcan in [8] defines a $\mu $-essential submodule provided it has a non-zero intersection with any non-zero submodule in $\mu $. We define and investigate $\mu $-singular modules. We also introduce $\mu $-extending and weakly $\mu $-extending modules and mainly study weakly $\mu $-extending modules. We give some characterizations of $\mu $-co-H-rings by weakly $\mu $-extending modules. Let $R$ be a right non-$\mu $-singular ring such that all injective modules are non-$\mu $-singular, then $R$ is right $\mu $-co-H-ring if and only if $R$ is a QF-ring.
Let $M$ be a module and $\mu $ be a class of modules in $\operatorname{Mod}-R$ which is closed under isomorphisms and submodules. As a generalization of essential submodules Özcan in [8] defines a $\mu $-essential submodule provided it has a non-zero intersection with any non-zero submodule in $\mu $. We define and investigate $\mu $-singular modules. We also introduce $\mu $-extending and weakly $\mu $-extending modules and mainly study weakly $\mu $-extending modules. We give some characterizations of $\mu $-co-H-rings by weakly $\mu $-extending modules. Let $R$ be a right non-$\mu $-singular ring such that all injective modules are non-$\mu $-singular, then $R$ is right $\mu $-co-H-ring if and only if $R$ is a QF-ring.
DOI : 10.5817/AM2012-3-183
Classification : 16D10, 16D70, 16D99, 16S90
Keywords: $\mu $-essential submodule; $\mu $-singular module; $\mu $-extending module; weakly $\mu $-extending module
@article{10_5817_AM2012_3_183,
     author = {Talebi, Yahya and Hamzekolaee, Ali Reza Moniri},
     title = {On $\mu $-singular and $\mu $-extending modules},
     journal = {Archivum mathematicum},
     pages = {183--196},
     year = {2012},
     volume = {48},
     number = {3},
     doi = {10.5817/AM2012-3-183},
     mrnumber = {2995871},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2012-3-183/}
}
TY  - JOUR
AU  - Talebi, Yahya
AU  - Hamzekolaee, Ali Reza Moniri
TI  - On $\mu $-singular and $\mu $-extending modules
JO  - Archivum mathematicum
PY  - 2012
SP  - 183
EP  - 196
VL  - 48
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2012-3-183/
DO  - 10.5817/AM2012-3-183
LA  - en
ID  - 10_5817_AM2012_3_183
ER  - 
%0 Journal Article
%A Talebi, Yahya
%A Hamzekolaee, Ali Reza Moniri
%T On $\mu $-singular and $\mu $-extending modules
%J Archivum mathematicum
%D 2012
%P 183-196
%V 48
%N 3
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2012-3-183/
%R 10.5817/AM2012-3-183
%G en
%F 10_5817_AM2012_3_183
Talebi, Yahya; Hamzekolaee, Ali Reza Moniri. On $\mu $-singular and $\mu $-extending modules. Archivum mathematicum, Tome 48 (2012) no. 3, pp. 183-196. doi: 10.5817/AM2012-3-183

[1] Chatters, A. W., Khuri, S. M.: Endomorphism rings of modules over nonsingular CS rings. J. London Math. Soc. 21 (2) (1980), 434–444. | DOI | MR

[2] Dung, N. V., Huynh, D. V., Smith, P. F., Wisbauer, R.: Extending Modules. Pitman, London, 1994.

[3] Faith, C.: Algebra II: Ring Theory. Springer–Verlag Berlin–Heidelberg–New York, 1976. | MR

[4] Goodearl, K. R.: Ring Theory. Marcel Dekker, New York – Basel, 1976. | MR

[5] Mohamed, S. H., Müller, B. J.: Continuous and Discrete Modules. London Math. Soc. 147 (1990). | MR

[6] Oshiro, K.: Lifting modules, extending modules and their applications to QF-rings. Hokkaido Math. J. 13 (1984), 310–338. | MR

[7] Özcan, A. Ç.: On GCO–modules and M–small modules. Comm. Fac. Sci. Univ. Ankara Ser. A1 51 (2) (2002), 25–36. | MR | Zbl

[8] Özcan, A. Ç.: On $\mu $–essential and $\mu $–$M$–singular modules. Proceedings of the Fifth China–Japan–Korea Conference, Tokyo, Japan, 2007, pp. 272–283. | MR

[9] Özcan, A. Ç.: The torsion theory cogenerated by $\delta $–M–small modules and GCO–modules. Comm. Algebra 35 (2007), 623–633. | DOI | MR | Zbl

[10] Talebi, Y., Vanaja, N.: The torsion theory cogenerated by M–small modules. Comm. Algebra 30 (3) (2002), 1449–1460. | DOI | MR | Zbl

Cité par Sources :