Some logarithmic functional equations
Archivum mathematicum, Tome 48 (2012) no. 3, pp. 173-181 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The functional equation $f(y-x) - g(xy) = h\left(1/x-1/y\right)$ is solved for general solution. The result is then applied to show that the three functional equations $f(xy)=f(x)+f(y)$, $f(y-x)-f(xy)=f(1/x-1/y)$ and $f(y-x)-f(x)-f(y)=f(1/x-1/y)$ are equivalent. Finally, twice differentiable solution functions of the functional equation $f(y-x) - g_1(x)-g_2(y) = h\left(1/x-1/y\right)$ are determined.
The functional equation $f(y-x) - g(xy) = h\left(1/x-1/y\right)$ is solved for general solution. The result is then applied to show that the three functional equations $f(xy)=f(x)+f(y)$, $f(y-x)-f(xy)=f(1/x-1/y)$ and $f(y-x)-f(x)-f(y)=f(1/x-1/y)$ are equivalent. Finally, twice differentiable solution functions of the functional equation $f(y-x) - g_1(x)-g_2(y) = h\left(1/x-1/y\right)$ are determined.
DOI : 10.5817/AM2012-3-173
Classification : 39B20
Keywords: logarithmic functional equation; Pexider equations
@article{10_5817_AM2012_3_173,
     author = {Laohakosol, Vichian and Pimsert, Watcharapon and Hengkrawit, Charinthip and Ebanks, Bruce},
     title = {Some logarithmic functional equations},
     journal = {Archivum mathematicum},
     pages = {173--181},
     year = {2012},
     volume = {48},
     number = {3},
     doi = {10.5817/AM2012-3-173},
     mrnumber = {2995870},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2012-3-173/}
}
TY  - JOUR
AU  - Laohakosol, Vichian
AU  - Pimsert, Watcharapon
AU  - Hengkrawit, Charinthip
AU  - Ebanks, Bruce
TI  - Some logarithmic functional equations
JO  - Archivum mathematicum
PY  - 2012
SP  - 173
EP  - 181
VL  - 48
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2012-3-173/
DO  - 10.5817/AM2012-3-173
LA  - en
ID  - 10_5817_AM2012_3_173
ER  - 
%0 Journal Article
%A Laohakosol, Vichian
%A Pimsert, Watcharapon
%A Hengkrawit, Charinthip
%A Ebanks, Bruce
%T Some logarithmic functional equations
%J Archivum mathematicum
%D 2012
%P 173-181
%V 48
%N 3
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2012-3-173/
%R 10.5817/AM2012-3-173
%G en
%F 10_5817_AM2012_3_173
Laohakosol, Vichian; Pimsert, Watcharapon; Hengkrawit, Charinthip; Ebanks, Bruce. Some logarithmic functional equations. Archivum mathematicum, Tome 48 (2012) no. 3, pp. 173-181. doi: 10.5817/AM2012-3-173

[1] Chung, J.–Y.: A remark on a logarithmic functional equation. J. Math. Anal. Appl. 336 (2007), 745–748. | DOI | MR | Zbl

[2] Ebanks, B.: On Heuvers’ logarithmic functional equation. Result. Math. 42 (2002), 37–41. | DOI | MR | Zbl

[3] Heuvers, K. J.: Another logarithmic functional equation. Aequationes Math. 58 (1999), 260–264. | DOI | MR

[4] Heuvers, K. J., Kannappan, P.: A third logarithmic functional equation and Pexider generalizations. Aequationes Math. 70 (2005), 117–121. | DOI | MR | Zbl

[5] Kannappan, P.: Functional Equations and Inequalities with Applications. Springer, Dordrecht, 2009. | MR | Zbl

[6] Kuczma, M.: An Introduction to the Theory of Functional Equations and Inequalities. second ed., Birkhäuser, Basel, 2009. | MR | Zbl

[7] Rätz, J.: On the theory of functional equation $f(xy) = f(x)+f(y)$. Elem. Math. 21 (1966), 10–13.

Cité par Sources :