Keywords: pseudo-complemented distributive lattice; dense element; closed element; $\delta$-ideal; Stone lattice; congruence
@article{10_5817_AM2012_2_97,
author = {Sambasiva Rao, M.},
title = {$\delta$-ideals in pseudo-complemented distributive lattices},
journal = {Archivum mathematicum},
pages = {97--105},
year = {2012},
volume = {48},
number = {2},
doi = {10.5817/AM2012-2-97},
mrnumber = {2946209},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2012-2-97/}
}
Sambasiva Rao, M. $\delta$-ideals in pseudo-complemented distributive lattices. Archivum mathematicum, Tome 48 (2012) no. 2, pp. 97-105. doi: 10.5817/AM2012-2-97
[1] Balbes, R., Horn, A.: Stone lattices. Duke Math. J. 37 (1970), 537–545. | MR | Zbl
[2] Birkhoff, G.: Lattice Theory. Colloquium Publications, vol. 25, Amer. Math. Soc., New York, 1948. | MR | Zbl
[3] Cornish, W. H.: Congruences on distributive pseudocomplemented lattices. Bull. Austral. Math. Soc. 8 (1973), 161–179. | DOI | MR | Zbl
[4] Frink, O.: Pseudo-complements in semi-lattices. Duke Math. J. 29 (1962), 505–514. | DOI | MR | Zbl
[5] Grätzer, G.: A generalization on Stone’s representation theorem for Boolean algebras. Duke Math. J. 30 (1963), 469–474. | DOI | MR
[6] Grätzer, G.: General lattice theory. Academic Press, New York, San Francisco, 1978. | MR | Zbl
[7] Speed, T. P.: Two congruences on distributive lattices. Bull. Soc. Roy. Sci. Liège 38 (3–4) (1969), 86–95. | MR | Zbl
[8] Speed, T. P.: Spaces of ideals of distributive lattices II. Minimal prime ideals. J. Austral. Math. Soc. 18 (1974), 54–72. | DOI | MR | Zbl
Cité par Sources :