$\delta$-ideals in pseudo-complemented distributive lattices
Archivum mathematicum, Tome 48 (2012) no. 2, pp. 97-105 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The concept of $\delta$-ideals is introduced in a pseudo-complemented distributive lattice and some properties of these ideals are studied. Stone lattices are characterized in terms of $\delta$-ideals. A set of equivalent conditions is obtained to characterize a Boolean algebra in terms of $\delta$-ideals. Finally, some properties of $\delta$-ideals are studied with respect to homomorphisms and filter congruences.
The concept of $\delta$-ideals is introduced in a pseudo-complemented distributive lattice and some properties of these ideals are studied. Stone lattices are characterized in terms of $\delta$-ideals. A set of equivalent conditions is obtained to characterize a Boolean algebra in terms of $\delta$-ideals. Finally, some properties of $\delta$-ideals are studied with respect to homomorphisms and filter congruences.
DOI : 10.5817/AM2012-2-97
Classification : 06D15, 06D99
Keywords: pseudo-complemented distributive lattice; dense element; closed element; $\delta$-ideal; Stone lattice; congruence
@article{10_5817_AM2012_2_97,
     author = {Sambasiva Rao, M.},
     title = {$\delta$-ideals in pseudo-complemented distributive lattices},
     journal = {Archivum mathematicum},
     pages = {97--105},
     year = {2012},
     volume = {48},
     number = {2},
     doi = {10.5817/AM2012-2-97},
     mrnumber = {2946209},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2012-2-97/}
}
TY  - JOUR
AU  - Sambasiva Rao, M.
TI  - $\delta$-ideals in pseudo-complemented distributive lattices
JO  - Archivum mathematicum
PY  - 2012
SP  - 97
EP  - 105
VL  - 48
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2012-2-97/
DO  - 10.5817/AM2012-2-97
LA  - en
ID  - 10_5817_AM2012_2_97
ER  - 
%0 Journal Article
%A Sambasiva Rao, M.
%T $\delta$-ideals in pseudo-complemented distributive lattices
%J Archivum mathematicum
%D 2012
%P 97-105
%V 48
%N 2
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2012-2-97/
%R 10.5817/AM2012-2-97
%G en
%F 10_5817_AM2012_2_97
Sambasiva Rao, M. $\delta$-ideals in pseudo-complemented distributive lattices. Archivum mathematicum, Tome 48 (2012) no. 2, pp. 97-105. doi: 10.5817/AM2012-2-97

[1] Balbes, R., Horn, A.: Stone lattices. Duke Math. J. 37 (1970), 537–545. | MR | Zbl

[2] Birkhoff, G.: Lattice Theory. Colloquium Publications, vol. 25, Amer. Math. Soc., New York, 1948. | MR | Zbl

[3] Cornish, W. H.: Congruences on distributive pseudocomplemented lattices. Bull. Austral. Math. Soc. 8 (1973), 161–179. | DOI | MR | Zbl

[4] Frink, O.: Pseudo-complements in semi-lattices. Duke Math. J. 29 (1962), 505–514. | DOI | MR | Zbl

[5] Grätzer, G.: A generalization on Stone’s representation theorem for Boolean algebras. Duke Math. J. 30 (1963), 469–474. | DOI | MR

[6] Grätzer, G.: General lattice theory. Academic Press, New York, San Francisco, 1978. | MR | Zbl

[7] Speed, T. P.: Two congruences on distributive lattices. Bull. Soc. Roy. Sci. Liège 38 (3–4) (1969), 86–95. | MR | Zbl

[8] Speed, T. P.: Spaces of ideals of distributive lattices II. Minimal prime ideals. J. Austral. Math. Soc. 18 (1974), 54–72. | DOI | MR | Zbl

Cité par Sources :