$g$-natural metrics of constant curvature on unit tangent sphere bundles
Archivum mathematicum, Tome 48 (2012) no. 2, pp. 81-95.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We completely classify Riemannian $g$-natural metrics of constant sectional curvature on the unit tangent sphere bundle $T_1 M$ of a Riemannian manifold $(M,g)$. Since the base manifold $M$ turns out to be necessarily two-dimensional, weaker curvature conditions are also investigated for a Riemannian $g$-natural metric on the unit tangent sphere bundle of a Riemannian surface.
DOI : 10.5817/AM2012-2-81
Classification : 53C15, 53C25, 53D10
Keywords: unit tangent sphere bundle; $g$-natural metric; curvature tensor; contact metric geometry
@article{10_5817_AM2012_2_81,
     author = {Abbassi, M.~T.~K. and Calvaruso, G.},
     title = {$g$-natural metrics of constant curvature on unit tangent sphere bundles},
     journal = {Archivum mathematicum},
     pages = {81--95},
     publisher = {mathdoc},
     volume = {48},
     number = {2},
     year = {2012},
     doi = {10.5817/AM2012-2-81},
     mrnumber = {2946208},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2012-2-81/}
}
TY  - JOUR
AU  - Abbassi, M. T. K.
AU  - Calvaruso, G.
TI  - $g$-natural metrics of constant curvature on unit tangent sphere bundles
JO  - Archivum mathematicum
PY  - 2012
SP  - 81
EP  - 95
VL  - 48
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2012-2-81/
DO  - 10.5817/AM2012-2-81
LA  - en
ID  - 10_5817_AM2012_2_81
ER  - 
%0 Journal Article
%A Abbassi, M. T. K.
%A Calvaruso, G.
%T $g$-natural metrics of constant curvature on unit tangent sphere bundles
%J Archivum mathematicum
%D 2012
%P 81-95
%V 48
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2012-2-81/
%R 10.5817/AM2012-2-81
%G en
%F 10_5817_AM2012_2_81
Abbassi, M. T. K.; Calvaruso, G. $g$-natural metrics of constant curvature on unit tangent sphere bundles. Archivum mathematicum, Tome 48 (2012) no. 2, pp. 81-95. doi : 10.5817/AM2012-2-81. http://geodesic.mathdoc.fr/articles/10.5817/AM2012-2-81/

Cité par Sources :