Keywords: unit tangent sphere bundle; $g$-natural metric; curvature tensor; contact metric geometry
@article{10_5817_AM2012_2_81,
author = {Abbassi, M.~T.~K. and Calvaruso, G.},
title = {$g$-natural metrics of constant curvature on unit tangent sphere bundles},
journal = {Archivum mathematicum},
pages = {81--95},
year = {2012},
volume = {48},
number = {2},
doi = {10.5817/AM2012-2-81},
mrnumber = {2946208},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2012-2-81/}
}
TY - JOUR AU - Abbassi, M. T. K. AU - Calvaruso, G. TI - $g$-natural metrics of constant curvature on unit tangent sphere bundles JO - Archivum mathematicum PY - 2012 SP - 81 EP - 95 VL - 48 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2012-2-81/ DO - 10.5817/AM2012-2-81 LA - en ID - 10_5817_AM2012_2_81 ER -
Abbassi, M. T. K.; Calvaruso, G. $g$-natural metrics of constant curvature on unit tangent sphere bundles. Archivum mathematicum, Tome 48 (2012) no. 2, pp. 81-95. doi: 10.5817/AM2012-2-81
[1] Abbassi, K. M. T., Calvaruso, G.: $g$–natural contact metrics on unit tangent sphere bundles. Monaths. Math. 151 (2006), 89–109. | DOI
[2] Abbassi, K. M. T., Calvaruso, G.: The curvature tensor of $g$-natural metrics on unit tangent sphere bundles. Int. J. Contemp. Math. Sci. 6 (3) (2008), 245–258. | MR | Zbl
[3] Abbassi, K. M. T., Kowalski, O.: Naturality of homogeneous metrics on Stiefel manifolds $SO(m+1)/SO(m-1)$. Differential Geom. Appl. 28 (2010), 131–139. | DOI | MR | Zbl
[4] Abbassi, K. M. T., Sarih, M.: On natural metrics on tangent bundles of Riemannian manifolds. Arch. Math. (Brno) 41 (2005), 71–92. | MR | Zbl
[5] Abbassi, K. M. T., Sarih, M.: On some hereditary properties of Riemannian $g$-natural metrics on tangent bundles of Riemannian manifolds. Differential Geom. Appl. 22 (1) (2005), 19–47. | MR | Zbl
[6] Boeckx, E., Vanhecke, L.: Unit tangent bundles with constant scalar curvature. Czechoslovak Math. J. 51 (2001), 523–544. | DOI | MR
[7] Calvaruso, G.: Contact metric geometry of the unit tangent sphere bundle. In: Complex, Contact and Symmetric manifolds, in Honor of L. Vanhecke. : Complex, Contact and Symmetric manifolds, in Honor of L. Vanhecke, Progr. Math. 234 (2005), 271–285. | MR
[8] Kolář, I., Michor, P. W., Slovák, J.: Natural operations in differential geometry. Springer–Verlag, Berlin, 1993. | MR | Zbl
[9] Kowalski, O.: On curvature homogeneous spaces. Publ. Dep. Geom. Topologia, Univ. Santiago Compostela (Cordero, L. A. et al., ed.), 1998, pp. 193–205. | Zbl
[10] Kowalski, O., Sekizawa, M.: Natural transformations of Riemannian metrics on manifolds to metrics on tangent bundles – a classification. Bull. Tokyo Gakugei Univ. (4) 40 (1988), 1–29. | MR | Zbl
Cité par Sources :