$g$-natural metrics of constant curvature on unit tangent sphere bundles
Archivum mathematicum, Tome 48 (2012) no. 2, pp. 81-95 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We completely classify Riemannian $g$-natural metrics of constant sectional curvature on the unit tangent sphere bundle $T_1 M$ of a Riemannian manifold $(M,g)$. Since the base manifold $M$ turns out to be necessarily two-dimensional, weaker curvature conditions are also investigated for a Riemannian $g$-natural metric on the unit tangent sphere bundle of a Riemannian surface.
We completely classify Riemannian $g$-natural metrics of constant sectional curvature on the unit tangent sphere bundle $T_1 M$ of a Riemannian manifold $(M,g)$. Since the base manifold $M$ turns out to be necessarily two-dimensional, weaker curvature conditions are also investigated for a Riemannian $g$-natural metric on the unit tangent sphere bundle of a Riemannian surface.
DOI : 10.5817/AM2012-2-81
Classification : 53C15, 53C25, 53D10
Keywords: unit tangent sphere bundle; $g$-natural metric; curvature tensor; contact metric geometry
@article{10_5817_AM2012_2_81,
     author = {Abbassi, M.~T.~K. and Calvaruso, G.},
     title = {$g$-natural metrics of constant curvature on unit tangent sphere bundles},
     journal = {Archivum mathematicum},
     pages = {81--95},
     year = {2012},
     volume = {48},
     number = {2},
     doi = {10.5817/AM2012-2-81},
     mrnumber = {2946208},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2012-2-81/}
}
TY  - JOUR
AU  - Abbassi, M. T. K.
AU  - Calvaruso, G.
TI  - $g$-natural metrics of constant curvature on unit tangent sphere bundles
JO  - Archivum mathematicum
PY  - 2012
SP  - 81
EP  - 95
VL  - 48
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2012-2-81/
DO  - 10.5817/AM2012-2-81
LA  - en
ID  - 10_5817_AM2012_2_81
ER  - 
%0 Journal Article
%A Abbassi, M. T. K.
%A Calvaruso, G.
%T $g$-natural metrics of constant curvature on unit tangent sphere bundles
%J Archivum mathematicum
%D 2012
%P 81-95
%V 48
%N 2
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2012-2-81/
%R 10.5817/AM2012-2-81
%G en
%F 10_5817_AM2012_2_81
Abbassi, M. T. K.; Calvaruso, G. $g$-natural metrics of constant curvature on unit tangent sphere bundles. Archivum mathematicum, Tome 48 (2012) no. 2, pp. 81-95. doi: 10.5817/AM2012-2-81

[1] Abbassi, K. M. T., Calvaruso, G.: $g$–natural contact metrics on unit tangent sphere bundles. Monaths. Math. 151 (2006), 89–109. | DOI

[2] Abbassi, K. M. T., Calvaruso, G.: The curvature tensor of $g$-natural metrics on unit tangent sphere bundles. Int. J. Contemp. Math. Sci. 6 (3) (2008), 245–258. | MR | Zbl

[3] Abbassi, K. M. T., Kowalski, O.: Naturality of homogeneous metrics on Stiefel manifolds $SO(m+1)/SO(m-1)$. Differential Geom. Appl. 28 (2010), 131–139. | DOI | MR | Zbl

[4] Abbassi, K. M. T., Sarih, M.: On natural metrics on tangent bundles of Riemannian manifolds. Arch. Math. (Brno) 41 (2005), 71–92. | MR | Zbl

[5] Abbassi, K. M. T., Sarih, M.: On some hereditary properties of Riemannian $g$-natural metrics on tangent bundles of Riemannian manifolds. Differential Geom. Appl. 22 (1) (2005), 19–47. | MR | Zbl

[6] Boeckx, E., Vanhecke, L.: Unit tangent bundles with constant scalar curvature. Czechoslovak Math. J. 51 (2001), 523–544. | DOI | MR

[7] Calvaruso, G.: Contact metric geometry of the unit tangent sphere bundle. In: Complex, Contact and Symmetric manifolds, in Honor of L. Vanhecke. : Complex, Contact and Symmetric manifolds, in Honor of L. Vanhecke, Progr. Math. 234 (2005), 271–285. | MR

[8] Kolář, I., Michor, P. W., Slovák, J.: Natural operations in differential geometry. Springer–Verlag, Berlin, 1993. | MR | Zbl

[9] Kowalski, O.: On curvature homogeneous spaces. Publ. Dep. Geom. Topologia, Univ. Santiago Compostela (Cordero, L. A. et al., ed.), 1998, pp. 193–205. | Zbl

[10] Kowalski, O., Sekizawa, M.: Natural transformations of Riemannian metrics on manifolds to metrics on tangent bundles – a classification. Bull. Tokyo Gakugei Univ. (4) 40 (1988), 1–29. | MR | Zbl

Cité par Sources :