$g$-natural metrics of constant curvature on unit tangent sphere bundles
Archivum mathematicum, Tome 48 (2012) no. 2, pp. 81-95
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We completely classify Riemannian $g$-natural metrics of constant sectional curvature on the unit tangent sphere bundle $T_1 M$ of a Riemannian manifold $(M,g)$. Since the base manifold $M$ turns out to be necessarily two-dimensional, weaker curvature conditions are also investigated for a Riemannian $g$-natural metric on the unit tangent sphere bundle of a Riemannian surface.
DOI :
10.5817/AM2012-2-81
Classification :
53C15, 53C25, 53D10
Keywords: unit tangent sphere bundle; $g$-natural metric; curvature tensor; contact metric geometry
Keywords: unit tangent sphere bundle; $g$-natural metric; curvature tensor; contact metric geometry
@article{10_5817_AM2012_2_81,
author = {Abbassi, M.~T.~K. and Calvaruso, G.},
title = {$g$-natural metrics of constant curvature on unit tangent sphere bundles},
journal = {Archivum mathematicum},
pages = {81--95},
publisher = {mathdoc},
volume = {48},
number = {2},
year = {2012},
doi = {10.5817/AM2012-2-81},
mrnumber = {2946208},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2012-2-81/}
}
TY - JOUR AU - Abbassi, M. T. K. AU - Calvaruso, G. TI - $g$-natural metrics of constant curvature on unit tangent sphere bundles JO - Archivum mathematicum PY - 2012 SP - 81 EP - 95 VL - 48 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2012-2-81/ DO - 10.5817/AM2012-2-81 LA - en ID - 10_5817_AM2012_2_81 ER -
%0 Journal Article %A Abbassi, M. T. K. %A Calvaruso, G. %T $g$-natural metrics of constant curvature on unit tangent sphere bundles %J Archivum mathematicum %D 2012 %P 81-95 %V 48 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.5817/AM2012-2-81/ %R 10.5817/AM2012-2-81 %G en %F 10_5817_AM2012_2_81
Abbassi, M. T. K.; Calvaruso, G. $g$-natural metrics of constant curvature on unit tangent sphere bundles. Archivum mathematicum, Tome 48 (2012) no. 2, pp. 81-95. doi: 10.5817/AM2012-2-81
Cité par Sources :