A characterization of harmonic sections and a Liouville theorem
Archivum mathematicum, Tome 48 (2012) no. 2, pp. 149-162
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $P(M,G)$ be a principal fiber bundle and $E(M,N,G,P)$ an associated fiber bundle. Our interest is to study the harmonic sections of the projection $\pi_{E}$ of $E$ into $M$. Our first purpose is give a characterization of harmonic sections of $M$ into $E$ regarding its equivariant lift. The second purpose is to show a version of a Liouville theorem for harmonic sections of $\pi_{E}$.
DOI :
10.5817/AM2012-2-149
Classification :
53C43, 55R10, 58E20, 58J65, 60H30
Keywords: harmonic sections; Liouville theorem; stochastic analysis on manifolds
Keywords: harmonic sections; Liouville theorem; stochastic analysis on manifolds
@article{10_5817_AM2012_2_149,
author = {Stelmastchuk, Sim\~ao},
title = {A characterization of harmonic sections and a {Liouville} theorem},
journal = {Archivum mathematicum},
pages = {149--162},
publisher = {mathdoc},
volume = {48},
number = {2},
year = {2012},
doi = {10.5817/AM2012-2-149},
mrnumber = {2946214},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2012-2-149/}
}
TY - JOUR AU - Stelmastchuk, Simão TI - A characterization of harmonic sections and a Liouville theorem JO - Archivum mathematicum PY - 2012 SP - 149 EP - 162 VL - 48 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2012-2-149/ DO - 10.5817/AM2012-2-149 LA - en ID - 10_5817_AM2012_2_149 ER -
Stelmastchuk, Simão. A characterization of harmonic sections and a Liouville theorem. Archivum mathematicum, Tome 48 (2012) no. 2, pp. 149-162. doi: 10.5817/AM2012-2-149
Cité par Sources :