A characterization of harmonic sections and a Liouville theorem
Archivum mathematicum, Tome 48 (2012) no. 2, pp. 149-162 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $P(M,G)$ be a principal fiber bundle and $E(M,N,G,P)$ an associated fiber bundle. Our interest is to study the harmonic sections of the projection $\pi_{E}$ of $E$ into $M$. Our first purpose is give a characterization of harmonic sections of $M$ into $E$ regarding its equivariant lift. The second purpose is to show a version of a Liouville theorem for harmonic sections of $\pi_{E}$.
Let $P(M,G)$ be a principal fiber bundle and $E(M,N,G,P)$ an associated fiber bundle. Our interest is to study the harmonic sections of the projection $\pi_{E}$ of $E$ into $M$. Our first purpose is give a characterization of harmonic sections of $M$ into $E$ regarding its equivariant lift. The second purpose is to show a version of a Liouville theorem for harmonic sections of $\pi_{E}$.
DOI : 10.5817/AM2012-2-149
Classification : 53C43, 55R10, 58E20, 58J65, 60H30
Keywords: harmonic sections; Liouville theorem; stochastic analysis on manifolds
@article{10_5817_AM2012_2_149,
     author = {Stelmastchuk, Sim\~ao},
     title = {A characterization of harmonic sections and a {Liouville} theorem},
     journal = {Archivum mathematicum},
     pages = {149--162},
     year = {2012},
     volume = {48},
     number = {2},
     doi = {10.5817/AM2012-2-149},
     mrnumber = {2946214},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2012-2-149/}
}
TY  - JOUR
AU  - Stelmastchuk, Simão
TI  - A characterization of harmonic sections and a Liouville theorem
JO  - Archivum mathematicum
PY  - 2012
SP  - 149
EP  - 162
VL  - 48
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2012-2-149/
DO  - 10.5817/AM2012-2-149
LA  - en
ID  - 10_5817_AM2012_2_149
ER  - 
%0 Journal Article
%A Stelmastchuk, Simão
%T A characterization of harmonic sections and a Liouville theorem
%J Archivum mathematicum
%D 2012
%P 149-162
%V 48
%N 2
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2012-2-149/
%R 10.5817/AM2012-2-149
%G en
%F 10_5817_AM2012_2_149
Stelmastchuk, Simão. A characterization of harmonic sections and a Liouville theorem. Archivum mathematicum, Tome 48 (2012) no. 2, pp. 149-162. doi: 10.5817/AM2012-2-149

[1] Arvanitoyeorgos, A.: An introduction to Lie groups and the geometry of homogeneous spaces. Student Mathematical Library, vol. 22, AMS, Providence, RI, 2003. | MR | Zbl

[2] Benyounes, M., Loubeau, E., Wood, C. M.: Harmonic sections of Riemannian vector bundles, and metrics of Cheeger–Gromoll type. Differential Geom. Appl. 25 (3) (2007), 322–334. | DOI | MR | Zbl

[3] Catuogno, P.: A geometric Itô formula. Workshop on Differential Geometry. Mat. Contemp., vol. 33, 2007, pp. 85–99. | MR | Zbl

[4] Catuogno, P., Stelmastchuk, S.: Martingales on frame bundles. Potential Anal. 28 (2008), 61–69. | DOI | MR | Zbl

[5] Elworthy, K. D., Kendall, W. S.: Factorization of harmonic maps and Brownian motions. Pitman Res. Notes Math. Ser. 150 (1985), 72–83. | MR

[6] Emery, M.: On two transfer principles in stochastic differential geometry. Séminaire de Probabilités XXIV, 407 – 441, Lectures Notes in Math., 1426, Springer, Berlin, 1989. | MR

[7] Emery, M.: Stochastic Calculus in Manifolds. Springer, Berlin, 1989. | MR | Zbl

[8] Emery, M.: Martingales continues dans les variétés différentiables. Lectures on probability theory and statistics (Saint-Flour, 1998), 1–84, Lecture Notes in Math., 1738, Springer, Berlin, 2000. | MR | Zbl

[9] Hsu, E.: Stochastic analysis on manifolds. Grad. Stud. Math. 38 (2002). | MR | Zbl

[10] Ishihara, S., Yano, K.: Tangent and cotangent bundles: Differential geometry. Pure Appl. Math. 16 (1973). | MR | Zbl

[11] Ishihara, T.: Harmonic sections of tangent bundles. J. Math. Tokushima Univ. 13 (1979), 23–27. | MR | Zbl

[12] J., Vilms: Totally geodesic maps. J. Differential Geom. 4 (1970), 73–79. | MR | Zbl

[13] Kendall, W. S.: Nonnegative Ricci curvature and the Brownian coupling property. Stochastics 19 (1–2) (1986), 111–129. | DOI | MR | Zbl

[14] Kendall, W. S.: From stochastic parallel transport to harmonic maps. New directions in Dirichlet forms, Amer. Math. Soc., Stud. Adv. Math. 8 ed., 1998, pp. 49–115. | MR | Zbl

[15] Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry. vol. I, Interscience Publishers, New York, 1963. | MR | Zbl

[16] Lindvall, T., Rogers, L. C. G.: Coupling of multidimensional diffusions by reflection. Ann. Probab. 14 (3) (1986), 860–872. | DOI | MR | Zbl

[17] Meyer, P. A.: Géométrie stochastique sans larmes. Seminar on Probability, XV (Univ. Strasbourg, Strasbourg, 1979/1980) (French), Lecture Notes in Math., 850, Springer, Berlin–New York, 1981, pp. 44–102. | MR | Zbl

[18] Musso, E., Tricerri, F.: Riemannian metrics on tangent bundle. Ann. Mat. Pura Appl. (4) 150 (1988), 1–19. | MR

[19] Poor, W. A.: Differential geometric structures. McGraw-Hill Book Co., New York, 1981. | MR | Zbl

[20] Protter, P.: Stochastic integration and differential equations. A new approach. Applications of Mathematics (New York), vol. 21, Springer-Verlag, Berlin, 1990. | MR | Zbl

[21] Shigekawa, I.: On stochastic horizontal lifts. Z. Wahrsch. Verw. Gebiete 59 (2) (1982), 211–221. | DOI | MR | Zbl

[22] Wood, C. M.: Gauss section in Riemannian immersion. J. London Math. Soc. (2) 33 (1) (1986), 157–168. | DOI | MR

[23] Wood, C. M.: Harmonic sections and Yang – Mills fields. Proc. London Math. Soc. (3) 54 (3) (1987), 544–558. | MR | Zbl

[24] Wood, C. M.: Harmonic sections and equivariant harmonic maps. Manuscripta Math. 94 (1) (1997), 1–13. | DOI | MR | Zbl

[25] Wood, C. M.: Harmonic sections of homogeneous fibre bundles. Differential Geom. Appl. 19 (2) (2003), 193–210. | DOI | MR | Zbl

Cité par Sources :