Keywords: harmonic sections; Liouville theorem; stochastic analysis on manifolds
@article{10_5817_AM2012_2_149,
author = {Stelmastchuk, Sim\~ao},
title = {A characterization of harmonic sections and a {Liouville} theorem},
journal = {Archivum mathematicum},
pages = {149--162},
year = {2012},
volume = {48},
number = {2},
doi = {10.5817/AM2012-2-149},
mrnumber = {2946214},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2012-2-149/}
}
TY - JOUR AU - Stelmastchuk, Simão TI - A characterization of harmonic sections and a Liouville theorem JO - Archivum mathematicum PY - 2012 SP - 149 EP - 162 VL - 48 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2012-2-149/ DO - 10.5817/AM2012-2-149 LA - en ID - 10_5817_AM2012_2_149 ER -
Stelmastchuk, Simão. A characterization of harmonic sections and a Liouville theorem. Archivum mathematicum, Tome 48 (2012) no. 2, pp. 149-162. doi: 10.5817/AM2012-2-149
[1] Arvanitoyeorgos, A.: An introduction to Lie groups and the geometry of homogeneous spaces. Student Mathematical Library, vol. 22, AMS, Providence, RI, 2003. | MR | Zbl
[2] Benyounes, M., Loubeau, E., Wood, C. M.: Harmonic sections of Riemannian vector bundles, and metrics of Cheeger–Gromoll type. Differential Geom. Appl. 25 (3) (2007), 322–334. | DOI | MR | Zbl
[3] Catuogno, P.: A geometric Itô formula. Workshop on Differential Geometry. Mat. Contemp., vol. 33, 2007, pp. 85–99. | MR | Zbl
[4] Catuogno, P., Stelmastchuk, S.: Martingales on frame bundles. Potential Anal. 28 (2008), 61–69. | DOI | MR | Zbl
[5] Elworthy, K. D., Kendall, W. S.: Factorization of harmonic maps and Brownian motions. Pitman Res. Notes Math. Ser. 150 (1985), 72–83. | MR
[6] Emery, M.: On two transfer principles in stochastic differential geometry. Séminaire de Probabilités XXIV, 407 – 441, Lectures Notes in Math., 1426, Springer, Berlin, 1989. | MR
[7] Emery, M.: Stochastic Calculus in Manifolds. Springer, Berlin, 1989. | MR | Zbl
[8] Emery, M.: Martingales continues dans les variétés différentiables. Lectures on probability theory and statistics (Saint-Flour, 1998), 1–84, Lecture Notes in Math., 1738, Springer, Berlin, 2000. | MR | Zbl
[9] Hsu, E.: Stochastic analysis on manifolds. Grad. Stud. Math. 38 (2002). | MR | Zbl
[10] Ishihara, S., Yano, K.: Tangent and cotangent bundles: Differential geometry. Pure Appl. Math. 16 (1973). | MR | Zbl
[11] Ishihara, T.: Harmonic sections of tangent bundles. J. Math. Tokushima Univ. 13 (1979), 23–27. | MR | Zbl
[12] J., Vilms: Totally geodesic maps. J. Differential Geom. 4 (1970), 73–79. | MR | Zbl
[13] Kendall, W. S.: Nonnegative Ricci curvature and the Brownian coupling property. Stochastics 19 (1–2) (1986), 111–129. | DOI | MR | Zbl
[14] Kendall, W. S.: From stochastic parallel transport to harmonic maps. New directions in Dirichlet forms, Amer. Math. Soc., Stud. Adv. Math. 8 ed., 1998, pp. 49–115. | MR | Zbl
[15] Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry. vol. I, Interscience Publishers, New York, 1963. | MR | Zbl
[16] Lindvall, T., Rogers, L. C. G.: Coupling of multidimensional diffusions by reflection. Ann. Probab. 14 (3) (1986), 860–872. | DOI | MR | Zbl
[17] Meyer, P. A.: Géométrie stochastique sans larmes. Seminar on Probability, XV (Univ. Strasbourg, Strasbourg, 1979/1980) (French), Lecture Notes in Math., 850, Springer, Berlin–New York, 1981, pp. 44–102. | MR | Zbl
[18] Musso, E., Tricerri, F.: Riemannian metrics on tangent bundle. Ann. Mat. Pura Appl. (4) 150 (1988), 1–19. | MR
[19] Poor, W. A.: Differential geometric structures. McGraw-Hill Book Co., New York, 1981. | MR | Zbl
[20] Protter, P.: Stochastic integration and differential equations. A new approach. Applications of Mathematics (New York), vol. 21, Springer-Verlag, Berlin, 1990. | MR | Zbl
[21] Shigekawa, I.: On stochastic horizontal lifts. Z. Wahrsch. Verw. Gebiete 59 (2) (1982), 211–221. | DOI | MR | Zbl
[22] Wood, C. M.: Gauss section in Riemannian immersion. J. London Math. Soc. (2) 33 (1) (1986), 157–168. | DOI | MR
[23] Wood, C. M.: Harmonic sections and Yang – Mills fields. Proc. London Math. Soc. (3) 54 (3) (1987), 544–558. | MR | Zbl
[24] Wood, C. M.: Harmonic sections and equivariant harmonic maps. Manuscripta Math. 94 (1) (1997), 1–13. | DOI | MR | Zbl
[25] Wood, C. M.: Harmonic sections of homogeneous fibre bundles. Differential Geom. Appl. 19 (2) (2003), 193–210. | DOI | MR | Zbl
Cité par Sources :