Keywords: functional differential equation; periodic solution; fixed point theorem
@article{10_5817_AM2012_2_139,
author = {Wang, Weibing and Lai, Baishun},
title = {Periodic solutions for a class of functional differential system},
journal = {Archivum mathematicum},
pages = {139--148},
year = {2012},
volume = {48},
number = {2},
doi = {10.5817/AM2012-2-139},
mrnumber = {2946213},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2012-2-139/}
}
TY - JOUR AU - Wang, Weibing AU - Lai, Baishun TI - Periodic solutions for a class of functional differential system JO - Archivum mathematicum PY - 2012 SP - 139 EP - 148 VL - 48 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2012-2-139/ DO - 10.5817/AM2012-2-139 LA - en ID - 10_5817_AM2012_2_139 ER -
Wang, Weibing; Lai, Baishun. Periodic solutions for a class of functional differential system. Archivum mathematicum, Tome 48 (2012) no. 2, pp. 139-148. doi: 10.5817/AM2012-2-139
[1] A. Wan, D. Jiang, Xu, X.: A new existence theory for positive periodic solutions to functional differential equations. Comput. Math. Appl. 47 (2004), 1257–1262. | DOI | MR
[2] Cheng, S., Zhang, G.: Existence of positive periodic solutions for non-autonomous functional differential equations. Electron. J. Differential Equations 59 (2001), 1–8. | MR | Zbl
[3] Chow, S.: Existence of periodic solutions of autonomous functional differential equations. Differential Equations 15 (1974), 350–378. | DOI | MR | Zbl
[4] Freedman, H. I., Wu, J.: Periodic solutions of single–species models with periodic delay. SIAM J. Math. Anal. 23 (1992), 689–701. | DOI | MR | Zbl
[5] Wang, H: Positive periodic solutions of functional differential equations. J. Differential Equations 202 (2004), 354–366. | DOI | MR | Zbl
[6] Jiang, D., Wei, J., Zhang, B.: Positive periodic solutions of functional differential equations and population models. Electron. J. Differential Equations 71 (2002), 1–13. | MR | Zbl
[7] Joseph, W., So, H., Yu, J.: Global attractivity and uniform persistence in Nicholson’s blowflies. Differential Equations Dynam. Systems 1 (1994), 11–18. | MR
[8] Kuang, Y., Smith, H. L.: Periodic solutions of differential delay equations with threshold-type delays, oscillations and dynamics in delay equations. Contemp. Math. 129 (1992), 153–176. | DOI | MR
[9] Li, Z., Wang, X.: Existence of positive periodic solutions for neutral functional differential equations. Electron. J. Differential Equations 34 (2006), 1–8. | MR | Zbl
[10] Weng, P., Liang, M.: The existence and behavior of periodic solution of hematopoiesis model. Math. Appl. 4 (1995), 434–439. | MR
Cité par Sources :