Periodic solutions for a class of functional differential system
Archivum mathematicum, Tome 48 (2012) no. 2, pp. 139-148 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, we study the existence of periodic solutions to a class of functional differential system. By using Schauder's fixed point theorem, we show that the system has aperiodic solution under given conditions. Finally, four examples are given to demonstrate the validity of our main results.
In this paper, we study the existence of periodic solutions to a class of functional differential system. By using Schauder's fixed point theorem, we show that the system has aperiodic solution under given conditions. Finally, four examples are given to demonstrate the validity of our main results.
DOI : 10.5817/AM2012-2-139
Classification : 34K13
Keywords: functional differential equation; periodic solution; fixed point theorem
@article{10_5817_AM2012_2_139,
     author = {Wang, Weibing and Lai, Baishun},
     title = {Periodic solutions for a class of functional differential system},
     journal = {Archivum mathematicum},
     pages = {139--148},
     year = {2012},
     volume = {48},
     number = {2},
     doi = {10.5817/AM2012-2-139},
     mrnumber = {2946213},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2012-2-139/}
}
TY  - JOUR
AU  - Wang, Weibing
AU  - Lai, Baishun
TI  - Periodic solutions for a class of functional differential system
JO  - Archivum mathematicum
PY  - 2012
SP  - 139
EP  - 148
VL  - 48
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2012-2-139/
DO  - 10.5817/AM2012-2-139
LA  - en
ID  - 10_5817_AM2012_2_139
ER  - 
%0 Journal Article
%A Wang, Weibing
%A Lai, Baishun
%T Periodic solutions for a class of functional differential system
%J Archivum mathematicum
%D 2012
%P 139-148
%V 48
%N 2
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2012-2-139/
%R 10.5817/AM2012-2-139
%G en
%F 10_5817_AM2012_2_139
Wang, Weibing; Lai, Baishun. Periodic solutions for a class of functional differential system. Archivum mathematicum, Tome 48 (2012) no. 2, pp. 139-148. doi: 10.5817/AM2012-2-139

[1] A. Wan, D. Jiang, Xu, X.: A new existence theory for positive periodic solutions to functional differential equations. Comput. Math. Appl. 47 (2004), 1257–1262. | DOI | MR

[2] Cheng, S., Zhang, G.: Existence of positive periodic solutions for non-autonomous functional differential equations. Electron. J. Differential Equations 59 (2001), 1–8. | MR | Zbl

[3] Chow, S.: Existence of periodic solutions of autonomous functional differential equations. Differential Equations 15 (1974), 350–378. | DOI | MR | Zbl

[4] Freedman, H. I., Wu, J.: Periodic solutions of single–species models with periodic delay. SIAM J. Math. Anal. 23 (1992), 689–701. | DOI | MR | Zbl

[5] Wang, H: Positive periodic solutions of functional differential equations. J. Differential Equations 202 (2004), 354–366. | DOI | MR | Zbl

[6] Jiang, D., Wei, J., Zhang, B.: Positive periodic solutions of functional differential equations and population models. Electron. J. Differential Equations 71 (2002), 1–13. | MR | Zbl

[7] Joseph, W., So, H., Yu, J.: Global attractivity and uniform persistence in Nicholson’s blowflies. Differential Equations Dynam. Systems 1 (1994), 11–18. | MR

[8] Kuang, Y., Smith, H. L.: Periodic solutions of differential delay equations with threshold-type delays, oscillations and dynamics in delay equations. Contemp. Math. 129 (1992), 153–176. | DOI | MR

[9] Li, Z., Wang, X.: Existence of positive periodic solutions for neutral functional differential equations. Electron. J. Differential Equations 34 (2006), 1–8. | MR | Zbl

[10] Weng, P., Liang, M.: The existence and behavior of periodic solution of hematopoiesis model. Math. Appl. 4 (1995), 434–439. | MR

Cité par Sources :