Keywords: $\phi$-Laplacian; BVPs; Krasnosel’skii’s fixed point theorem; Schauder’s fixed point theorem
@article{10_5817_AM2012_2_121,
author = {Bachouche, Kamal and Djebali, Sma{\"\i}l and Moussaoui, Toufik},
title = {$\phi${-Laplacian} {BVPs} with linear bounded operator conditions},
journal = {Archivum mathematicum},
pages = {121--137},
year = {2012},
volume = {48},
number = {2},
doi = {10.5817/AM2012-2-121},
mrnumber = {2946212},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2012-2-121/}
}
TY - JOUR AU - Bachouche, Kamal AU - Djebali, Smaïl AU - Moussaoui, Toufik TI - $\phi$-Laplacian BVPs with linear bounded operator conditions JO - Archivum mathematicum PY - 2012 SP - 121 EP - 137 VL - 48 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2012-2-121/ DO - 10.5817/AM2012-2-121 LA - en ID - 10_5817_AM2012_2_121 ER -
%0 Journal Article %A Bachouche, Kamal %A Djebali, Smaïl %A Moussaoui, Toufik %T $\phi$-Laplacian BVPs with linear bounded operator conditions %J Archivum mathematicum %D 2012 %P 121-137 %V 48 %N 2 %U http://geodesic.mathdoc.fr/articles/10.5817/AM2012-2-121/ %R 10.5817/AM2012-2-121 %G en %F 10_5817_AM2012_2_121
Bachouche, Kamal; Djebali, Smaïl; Moussaoui, Toufik. $\phi$-Laplacian BVPs with linear bounded operator conditions. Archivum mathematicum, Tome 48 (2012) no. 2, pp. 121-137. doi: 10.5817/AM2012-2-121
[1] Bachouche, K., Djebali, S., Moussaoui, T.: One-dimensional Dirichlet $\phi --$Laplacian BVPs with first order derivative dependence. Adv. Dynam. Syst. Appl. 6 (2) (2011), 159–175. | MR
[2] Benmezai, A., Djebali, S., Moussaoui, T.: Multiple positive solutions for $\phi $–Laplacian BVPs. Panamer. Math. J. 17 (3) (2007), 53–73. | MR
[3] Benmezai, A., Djebali, S., Moussaoui, T.: Positive solutions for $\phi $–Laplacian Dirichlet BVPs. Fixed Point Theory 8 (2) (2007), 167–186. | MR | Zbl
[4] Benmezai, A., Djebali, S., Moussaoui, T.: Existence results for one-dimensional Dirichlet $\phi $–Laplacian BVPs: a fixed point approach. Dynam. Systems Appl. 17 (2008), 149–166. | MR
[5] Deimling, K.: Nonlinear Functional Analysis. Springer–Verlag, Berlin, Heidelberg, 1985. | MR | Zbl
[6] Feng, H., Ge, W., Jiang, M.: Multiple positive solutions for $m$–point boundary-value problems with one–dimensional $p$–Laplacian. Nonlinear Anal. 68 (8) (2008), 2269–2279. | DOI | MR
[7] Granas, A., Dugundji, J.: Fixed Point Theory. Springer-Verlag, New York, 2003. | MR | Zbl
[8] Guo, D., Lakshmikantham, V.: Nonlinear Problems in Abstract Cones. Academic Press, San Diego, 1988. | MR | Zbl
[9] Ji, D., Feng, M., Ge, W.: Multiple positive solutions for multipoint boundary value problems with sign changing nonlinearity. Appl. Math. Comput. 196 (2008), 511–520. | DOI | MR | Zbl
[10] Karakostas, G. L.: Positive solutions for the $\Phi $–Laplacian when $\Phi $ is a sup–multiplicative–like function. Electron. J. Differential Equations 68 (2004), 1–12. | MR | Zbl
[11] Karakostas, G. L.: Triple positive solutions for the $\Phi $–Laplacian when $\Phi $ is a sup–multiplicative–like function. Electron. J. Differential Equations 69 (2004), 1–12. | MR | Zbl
[12] Karakostas, G. L.: Solvability of the $\phi $–Laplacian with nonlocal boundary conditions. Appl. Math. Comput. 215 (2009), 514–523. | DOI | MR
[13] Krasnosel’skii, M. A.: Positive Solutions of Operator Equations. Noordhoff, Groningen, The Netherlands, 1964.
[14] Smart, D. R.: Fixed Point Theorems. cambridge tracts in mathematics ed., vol. 66, Cambridge University Press, London, 1974. | MR | Zbl
[15] Wang, Y., Ge, W.: Existence of multiple positive solutions for multipoint boundary value problems with a one–dimensional $p$–Laplacian. Nonlinear Anal. 67 (2) (2007), 476–485. | DOI | MR | Zbl
[16] Wang, Y., Ge, W.: Existence of triple positive solutions for multi–point boundary value problems with a one dimensional $p$–Laplacian. Comput. Math. Appl. 54 (6) (2007), 793–807. | DOI | MR | Zbl
[17] Yan, B.: Multiple positive solutions for singular boundary–value problems with derivative dependence on finite and infinite intervals. Electron. J. Differential Equations 74 (2006), 1–25. | MR | Zbl
[18] Zeidler, E.: Nonlinear Functional Analysis and its Applications. Vol. I: Fixed Point Theorems. Springer–Verlag, New York, 1986. | MR
[19] Zhang, Z., Wang, J.: On existence and multiplicity of positive solutions to singular multi–point boundary value problems. J. Math. Anal. Appl. 295 (2004), 502–512. | DOI | MR | Zbl
Cité par Sources :