$\phi$-Laplacian BVPs with linear bounded operator conditions
Archivum mathematicum, Tome 48 (2012) no. 2, pp. 121-137 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The aim of this paper is to present new existence results for $\phi$-Laplacian boundary value problems with linear bounded operator conditions. Existence theorems are obtained using the Schauder and the Krasnosel'skii fixed point theorems. Some examples illustrate the results obtained and applications to multi-point boundary value problems are provided.
The aim of this paper is to present new existence results for $\phi$-Laplacian boundary value problems with linear bounded operator conditions. Existence theorems are obtained using the Schauder and the Krasnosel'skii fixed point theorems. Some examples illustrate the results obtained and applications to multi-point boundary value problems are provided.
DOI : 10.5817/AM2012-2-121
Classification : 34B10, 34B15, 34B18
Keywords: $\phi$-Laplacian; BVPs; Krasnosel’skii’s fixed point theorem; Schauder’s fixed point theorem
@article{10_5817_AM2012_2_121,
     author = {Bachouche, Kamal and Djebali, Sma{\"\i}l and Moussaoui, Toufik},
     title = {$\phi${-Laplacian} {BVPs} with linear bounded operator conditions},
     journal = {Archivum mathematicum},
     pages = {121--137},
     year = {2012},
     volume = {48},
     number = {2},
     doi = {10.5817/AM2012-2-121},
     mrnumber = {2946212},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2012-2-121/}
}
TY  - JOUR
AU  - Bachouche, Kamal
AU  - Djebali, Smaïl
AU  - Moussaoui, Toufik
TI  - $\phi$-Laplacian BVPs with linear bounded operator conditions
JO  - Archivum mathematicum
PY  - 2012
SP  - 121
EP  - 137
VL  - 48
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2012-2-121/
DO  - 10.5817/AM2012-2-121
LA  - en
ID  - 10_5817_AM2012_2_121
ER  - 
%0 Journal Article
%A Bachouche, Kamal
%A Djebali, Smaïl
%A Moussaoui, Toufik
%T $\phi$-Laplacian BVPs with linear bounded operator conditions
%J Archivum mathematicum
%D 2012
%P 121-137
%V 48
%N 2
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2012-2-121/
%R 10.5817/AM2012-2-121
%G en
%F 10_5817_AM2012_2_121
Bachouche, Kamal; Djebali, Smaïl; Moussaoui, Toufik. $\phi$-Laplacian BVPs with linear bounded operator conditions. Archivum mathematicum, Tome 48 (2012) no. 2, pp. 121-137. doi: 10.5817/AM2012-2-121

[1] Bachouche, K., Djebali, S., Moussaoui, T.: One-dimensional Dirichlet $\phi --$Laplacian BVPs with first order derivative dependence. Adv. Dynam. Syst. Appl. 6 (2) (2011), 159–175. | MR

[2] Benmezai, A., Djebali, S., Moussaoui, T.: Multiple positive solutions for $\phi $–Laplacian BVPs. Panamer. Math. J. 17 (3) (2007), 53–73. | MR

[3] Benmezai, A., Djebali, S., Moussaoui, T.: Positive solutions for $\phi $–Laplacian Dirichlet BVPs. Fixed Point Theory 8 (2) (2007), 167–186. | MR | Zbl

[4] Benmezai, A., Djebali, S., Moussaoui, T.: Existence results for one-dimensional Dirichlet $\phi $–Laplacian BVPs: a fixed point approach. Dynam. Systems Appl. 17 (2008), 149–166. | MR

[5] Deimling, K.: Nonlinear Functional Analysis. Springer–Verlag, Berlin, Heidelberg, 1985. | MR | Zbl

[6] Feng, H., Ge, W., Jiang, M.: Multiple positive solutions for $m$–point boundary-value problems with one–dimensional $p$–Laplacian. Nonlinear Anal. 68 (8) (2008), 2269–2279. | DOI | MR

[7] Granas, A., Dugundji, J.: Fixed Point Theory. Springer-Verlag, New York, 2003. | MR | Zbl

[8] Guo, D., Lakshmikantham, V.: Nonlinear Problems in Abstract Cones. Academic Press, San Diego, 1988. | MR | Zbl

[9] Ji, D., Feng, M., Ge, W.: Multiple positive solutions for multipoint boundary value problems with sign changing nonlinearity. Appl. Math. Comput. 196 (2008), 511–520. | DOI | MR | Zbl

[10] Karakostas, G. L.: Positive solutions for the $\Phi $–Laplacian when $\Phi $ is a sup–multiplicative–like function. Electron. J. Differential Equations 68 (2004), 1–12. | MR | Zbl

[11] Karakostas, G. L.: Triple positive solutions for the $\Phi $–Laplacian when $\Phi $ is a sup–multiplicative–like function. Electron. J. Differential Equations 69 (2004), 1–12. | MR | Zbl

[12] Karakostas, G. L.: Solvability of the $\phi $–Laplacian with nonlocal boundary conditions. Appl. Math. Comput. 215 (2009), 514–523. | DOI | MR

[13] Krasnosel’skii, M. A.: Positive Solutions of Operator Equations. Noordhoff, Groningen, The Netherlands, 1964.

[14] Smart, D. R.: Fixed Point Theorems. cambridge tracts in mathematics ed., vol. 66, Cambridge University Press, London, 1974. | MR | Zbl

[15] Wang, Y., Ge, W.: Existence of multiple positive solutions for multipoint boundary value problems with a one–dimensional $p$–Laplacian. Nonlinear Anal. 67 (2) (2007), 476–485. | DOI | MR | Zbl

[16] Wang, Y., Ge, W.: Existence of triple positive solutions for multi–point boundary value problems with a one dimensional $p$–Laplacian. Comput. Math. Appl. 54 (6) (2007), 793–807. | DOI | MR | Zbl

[17] Yan, B.: Multiple positive solutions for singular boundary–value problems with derivative dependence on finite and infinite intervals. Electron. J. Differential Equations 74 (2006), 1–25. | MR | Zbl

[18] Zeidler, E.: Nonlinear Functional Analysis and its Applications. Vol. I: Fixed Point Theorems. Springer–Verlag, New York, 1986. | MR

[19] Zhang, Z., Wang, J.: On existence and multiplicity of positive solutions to singular multi–point boundary value problems. J. Math. Anal. Appl. 295 (2004), 502–512. | DOI | MR | Zbl

Cité par Sources :