Combinatorial differential geometry and ideal Bianchi–Ricci identities II – the torsion case
Archivum mathematicum, Tome 48 (2012) no. 1, pp. 61-80 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This paper is a continuation of [2], dealing with a general, not-necessarily torsion-free, connection. It characterizes all possible systems of generators for vector-field valued operators that depend naturally on a set of vector fields and a linear connection, describes the size of the space of such operators and proves the existence of an ‘ideal’ basis consisting of operators with given leading terms which satisfy the (generalized) Bianchi–Ricci identities without corrections.
This paper is a continuation of [2], dealing with a general, not-necessarily torsion-free, connection. It characterizes all possible systems of generators for vector-field valued operators that depend naturally on a set of vector fields and a linear connection, describes the size of the space of such operators and proves the existence of an ‘ideal’ basis consisting of operators with given leading terms which satisfy the (generalized) Bianchi–Ricci identities without corrections.
DOI : 10.5817/AM2012-1-61
Classification : 20G05, 53C05, 58A32
Keywords: natural operator; linear connection; torsion; reduction theorem; graph
@article{10_5817_AM2012_1_61,
     author = {Jany\v{s}ka, Josef and Markl, Martin},
     title = {Combinatorial differential geometry and ideal {Bianchi{\textendash}Ricci} identities {II} {\textendash} the torsion case},
     journal = {Archivum mathematicum},
     pages = {61--80},
     year = {2012},
     volume = {48},
     number = {1},
     doi = {10.5817/AM2012-1-61},
     mrnumber = {2915850},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2012-1-61/}
}
TY  - JOUR
AU  - Janyška, Josef
AU  - Markl, Martin
TI  - Combinatorial differential geometry and ideal Bianchi–Ricci identities II – the torsion case
JO  - Archivum mathematicum
PY  - 2012
SP  - 61
EP  - 80
VL  - 48
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2012-1-61/
DO  - 10.5817/AM2012-1-61
LA  - en
ID  - 10_5817_AM2012_1_61
ER  - 
%0 Journal Article
%A Janyška, Josef
%A Markl, Martin
%T Combinatorial differential geometry and ideal Bianchi–Ricci identities II – the torsion case
%J Archivum mathematicum
%D 2012
%P 61-80
%V 48
%N 1
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2012-1-61/
%R 10.5817/AM2012-1-61
%G en
%F 10_5817_AM2012_1_61
Janyška, Josef; Markl, Martin. Combinatorial differential geometry and ideal Bianchi–Ricci identities II – the torsion case. Archivum mathematicum, Tome 48 (2012) no. 1, pp. 61-80. doi: 10.5817/AM2012-1-61

[1] Janyška, J.: Reduction theorems for general linear connections. Differential Geom. Appl. 20 (2004), 177. | DOI | MR | Zbl

[2] Janyška, J., Markl, M.: Combinatorial differential geometry and ideal Bianchi–Ricci identities. Adv. Geom. 11 (3) (2011), 509–540. | DOI | MR | Zbl

[3] Kolář, I., Michor, P. W., Slovák, J.: Natural operations in differential geometry. Springer–Verlag, Berlin, 1993. | MR | Zbl

[4] Krupka, D., Janyška, J.: Lectures on differential invariants. Folia Fac. Sci. Nat. Univ. Purkynianae Brun. Math., 1990. | MR | Zbl

[5] Łubczonok, G.: On reduction theorems. Ann. Polon. Math. 26 (1972), 125–133. | MR

[6] Mac Lane, S.: Homology. Springer–Verlag, 1963.

[7] Markl, M.: Homotopy algebras are homotopy algebras. Forum Math. 16 (2004), 129–160. | DOI | MR | Zbl

[8] Markl, M.: ${GL_n}$–invariant tensors and graphs. Arch. Math. (Brno) 44 (2008), 339–353. | MR | Zbl

[9] Markl, M.: Natural differential operators and graph complexes. Differential Geom. Appl. 27 (2009), 257–278. | DOI | MR | Zbl

[10] Markl, M., Shnider, S., Stasheff, J. D.: Operads in Algebra, Topology and Physics. Mathematical Surveys and Monographs, vol. 96, Amer. Math. Soc., 2002. | MR | Zbl

[11] Markl, M., Voronov, A. A.: PROPped up graph cohomology. Algebra, arithmetic, and geometry: In honor of Yu. I. Manin, vol. II, Birkhäuser Boston, Inc., Boston, MA, progr. math., 270 ed., 2009, pp. 249–281. | MR | Zbl

[12] Nijenhuis, A.: Theory of the geometric object. Thesis, University of Amsterdam (1952). | MR | Zbl

[13] Nijenhuis, A.: Natural bundles and their general properties. Geometric objects revisited. Differential geometry (in honor of Kentaro Yano), Kinokuniya, Tokyo, 1972, pp. 317–334. | MR | Zbl

[14] S. Kobayashi, K. Nomizu: Foundations of Differential Geometry. Interscience Publishers, 1963. | MR

[15] Schouten, J. A.: Ricci calculus. Berlin–Göttingen, 1954. | Zbl

[16] Terng, C. L.: Natural vector bundles and natural differential operators. Amer. J. Math. 100 (1978), 775–828. | DOI | MR | Zbl

[17] Veblen, O.: Invariants of quadratic differential forms. Cambridge Tracts in Mathematics and Mathematical Physics, no. 24, 1927.

Cité par Sources :