Keywords: natural operator; linear connection; torsion; reduction theorem; graph
@article{10_5817_AM2012_1_61,
author = {Jany\v{s}ka, Josef and Markl, Martin},
title = {Combinatorial differential geometry and ideal {Bianchi{\textendash}Ricci} identities {II} {\textendash} the torsion case},
journal = {Archivum mathematicum},
pages = {61--80},
year = {2012},
volume = {48},
number = {1},
doi = {10.5817/AM2012-1-61},
mrnumber = {2915850},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2012-1-61/}
}
TY - JOUR AU - Janyška, Josef AU - Markl, Martin TI - Combinatorial differential geometry and ideal Bianchi–Ricci identities II – the torsion case JO - Archivum mathematicum PY - 2012 SP - 61 EP - 80 VL - 48 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2012-1-61/ DO - 10.5817/AM2012-1-61 LA - en ID - 10_5817_AM2012_1_61 ER -
%0 Journal Article %A Janyška, Josef %A Markl, Martin %T Combinatorial differential geometry and ideal Bianchi–Ricci identities II – the torsion case %J Archivum mathematicum %D 2012 %P 61-80 %V 48 %N 1 %U http://geodesic.mathdoc.fr/articles/10.5817/AM2012-1-61/ %R 10.5817/AM2012-1-61 %G en %F 10_5817_AM2012_1_61
Janyška, Josef; Markl, Martin. Combinatorial differential geometry and ideal Bianchi–Ricci identities II – the torsion case. Archivum mathematicum, Tome 48 (2012) no. 1, pp. 61-80. doi: 10.5817/AM2012-1-61
[1] Janyška, J.: Reduction theorems for general linear connections. Differential Geom. Appl. 20 (2004), 177. | DOI | MR | Zbl
[2] Janyška, J., Markl, M.: Combinatorial differential geometry and ideal Bianchi–Ricci identities. Adv. Geom. 11 (3) (2011), 509–540. | DOI | MR | Zbl
[3] Kolář, I., Michor, P. W., Slovák, J.: Natural operations in differential geometry. Springer–Verlag, Berlin, 1993. | MR | Zbl
[4] Krupka, D., Janyška, J.: Lectures on differential invariants. Folia Fac. Sci. Nat. Univ. Purkynianae Brun. Math., 1990. | MR | Zbl
[5] Łubczonok, G.: On reduction theorems. Ann. Polon. Math. 26 (1972), 125–133. | MR
[6] Mac Lane, S.: Homology. Springer–Verlag, 1963.
[7] Markl, M.: Homotopy algebras are homotopy algebras. Forum Math. 16 (2004), 129–160. | DOI | MR | Zbl
[8] Markl, M.: ${GL_n}$–invariant tensors and graphs. Arch. Math. (Brno) 44 (2008), 339–353. | MR | Zbl
[9] Markl, M.: Natural differential operators and graph complexes. Differential Geom. Appl. 27 (2009), 257–278. | DOI | MR | Zbl
[10] Markl, M., Shnider, S., Stasheff, J. D.: Operads in Algebra, Topology and Physics. Mathematical Surveys and Monographs, vol. 96, Amer. Math. Soc., 2002. | MR | Zbl
[11] Markl, M., Voronov, A. A.: PROPped up graph cohomology. Algebra, arithmetic, and geometry: In honor of Yu. I. Manin, vol. II, Birkhäuser Boston, Inc., Boston, MA, progr. math., 270 ed., 2009, pp. 249–281. | MR | Zbl
[12] Nijenhuis, A.: Theory of the geometric object. Thesis, University of Amsterdam (1952). | MR | Zbl
[13] Nijenhuis, A.: Natural bundles and their general properties. Geometric objects revisited. Differential geometry (in honor of Kentaro Yano), Kinokuniya, Tokyo, 1972, pp. 317–334. | MR | Zbl
[14] S. Kobayashi, K. Nomizu: Foundations of Differential Geometry. Interscience Publishers, 1963. | MR
[15] Schouten, J. A.: Ricci calculus. Berlin–Göttingen, 1954. | Zbl
[16] Terng, C. L.: Natural vector bundles and natural differential operators. Amer. J. Math. 100 (1978), 775–828. | DOI | MR | Zbl
[17] Veblen, O.: Invariants of quadratic differential forms. Cambridge Tracts in Mathematics and Mathematical Physics, no. 24, 1927.
Cité par Sources :