Keywords: nonexpansive mapping; fixed point problems; Variational inequality; relaxed extragradient approximation method; maximal monotone
@article{10_5817_AM2012_1_45,
author = {Suvarnamani, Alongkot and Tatong, Mongkol},
title = {An extragradient approximation method for variational inequality problem on fixed point problem of nonexpensive mappings and monotone mappings},
journal = {Archivum mathematicum},
pages = {45--59},
year = {2012},
volume = {48},
number = {1},
doi = {10.5817/AM2012-1-45},
mrnumber = {2915849},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2012-1-45/}
}
TY - JOUR AU - Suvarnamani, Alongkot AU - Tatong, Mongkol TI - An extragradient approximation method for variational inequality problem on fixed point problem of nonexpensive mappings and monotone mappings JO - Archivum mathematicum PY - 2012 SP - 45 EP - 59 VL - 48 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2012-1-45/ DO - 10.5817/AM2012-1-45 LA - en ID - 10_5817_AM2012_1_45 ER -
%0 Journal Article %A Suvarnamani, Alongkot %A Tatong, Mongkol %T An extragradient approximation method for variational inequality problem on fixed point problem of nonexpensive mappings and monotone mappings %J Archivum mathematicum %D 2012 %P 45-59 %V 48 %N 1 %U http://geodesic.mathdoc.fr/articles/10.5817/AM2012-1-45/ %R 10.5817/AM2012-1-45 %G en %F 10_5817_AM2012_1_45
Suvarnamani, Alongkot; Tatong, Mongkol. An extragradient approximation method for variational inequality problem on fixed point problem of nonexpensive mappings and monotone mappings. Archivum mathematicum, Tome 48 (2012) no. 1, pp. 45-59. doi: 10.5817/AM2012-1-45
[1] Blum, E., Oettli, W.: From optimization and variational inequalities to equilibrium problems. Math. Student 63 (1994), 123–145. | MR | Zbl
[2] Browder, F. E., Petryshyn, W. V.: Construction of fixed points of nonlinear mappings in Hilbert spaces. J. Math. Anal. Appl. 20 (1967), 197–228. | DOI | MR
[3] Ceng, L.–C., Wang, C.–Y., Yao, J.–C.: Strong convergence theorems by a relaxed extragradient method for a general system of variational inequalities. Math. Methods Oper. Res. 67 (2008), 375–390. | DOI | MR | Zbl
[4] Combettes, P. L., Hirstoaga, S. A.: Equilibrium programming in Hilbert spaces. J. Nonlinear Convex Anal. 6 (1) (2005), 117–136. | MR | Zbl
[5] Goebel, K., Kirk, W. A.: Topics on Metric Fixed–Point Theory. Cambridge University Press, 1990. | MR
[6] Haugazeau, Y.: Surles in équations variationnelles et la minimisation de fonctionnelles convexes, Thèse. Master's thesis, Université de Paris, 1968.
[7] Korpelevich, G. M.: An extragradient method for finding saddle points and for other problems. Ékonom. i Mat. Metody 12 (940) (1976), 747–756, Russian. | MR
[8] Kumam, P.: Strong convergence theorems by an extragradient method for solving variational inequalities and equilibrium problems in a Hilbert space. Turkish J. Math. 33 (1) (2009), 85–98. | MR | Zbl
[9] Liu, F., Nashed, M. Z., Takahashi, W.: Regularization of nonlinear ill–posed variational inequalities and convergence rates. Set–Valued Anal. 6 (1998), 313–344. | MR
[10] Nadezhkina, N., Takahashi, W.: Weak convergence theorem by an extragradient method for nonexpansive mappings and monotone mappings. J. Optim. Theory Appl. 128 (2006), 191–201. | DOI | MR | Zbl
[11] Osilike, M. O., Igbokwe, D. I.: Weak and strong convergence theorems for fixed points of pseudocontractions and solutions of monotone type operator equations. Comput. Math. Appl. 40 (2000), 559–567. | DOI | MR | Zbl
[12] Plubtieng, S., Punpaeng, R.: A new iterative method for equilibrium problems 3 and fixed point problems of nonexpansive mappings and 4 monotone mappings. Appl. Math. Comput. (2007). | DOI
[13] Su, Y. et al.,: An iterative method of solution for equilibrium and optimization problems. Nonlinear Anal. (2007). | DOI
[14] Suzuki, T.: Strong convergence of Krasnoselskii and Mann’s type sequences for one–parameter nonexpansive semigroups without Bochner integrals. J. Math. Anal. Appl. 305 (2005), 227–239. | DOI | MR | Zbl
[15] Takahashi, S., Takahashi, W.: Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces. J. Math. Anal. Appl. 331 (1) (2007), 506–515. | DOI | MR | Zbl
[16] Takahashi, W., Toyoda, M.: Weak convergence theorems for nonexpansive mappings and monotone mappings. J. Optim. Theory Appl. 118 (2003), 417–428. | DOI | MR | Zbl
[17] Verma, R. U.: On a new system of nonlinear variational inequalities and associated iterative algorithms. Math. Sci. Res. Hot–Line 3 (8) (1999), 65–68. | MR | Zbl
[18] Verma, R. U.: Iterative algorithms and a new system of nonlinear quasivariational inequalities. Adv. Nonlinear Var. Inequal. 4 (1) (2001), 117–127. | MR | Zbl
[19] Xu, H. K.: Viscosity approximation methods for nonexpansive mappings. J. Math. Anal. Appl. 298 (2004), 279–291. | DOI | MR | Zbl
[20] Yao, J–C., Chadli, O.: Handbook of Generalized Convexity and Monotonicity. ch. Pseudomonotone complementarity problems and variational inequalities, pp. 501–558, Springer, Netherlands, 2005. | MR
[21] Yao, Y., C., Liou Y., Yao, J.–C.: An extragradient method for fixed point problems and variational inequality problems. Journal of Inequalities and Applications 2007 (2007), 12, article ID 38752. | DOI | MR | Zbl
[22] Yao, Y., Yao, J.–C.: On modified iterative method for nonexpansive mappings and monotone mappings. Appl. Math. Comput. 186 (2007), 1551–1558. | DOI | MR | Zbl
[23] Zeng, L. C., Wong, N. C., Yao, J.–C.: Strong convergence theorems for strictly pseudocontractive mapping of Browder–Petryshyn type. Taiwanese J. Math. 10 (4) (2006), 837–849. | MR
[24] Zeng, L. C., Yao, J.–C.: Strong convergence theorem by an extragradient method for fixed point problems and variational inequality problems. Taiwanese J. Math. 10 (2006), 1293–1303. | MR | Zbl
[25] Zhang, S., Lee, J., Chan, C.: Algorithms of common solutions to quasi variational inclusion and fixed point problems. Appl. Math. Mech. (English Ed.) 29 (5) (2008), 571–581. | DOI | MR | Zbl
Cité par Sources :