Weak$^*$-continuous derivations in dual Banach algebras
Archivum mathematicum, Tome 48 (2012) no. 1, pp. 39-44 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $\mathcal{A}$ be a dual Banach algebra. We investigate the first weak$^*$-continuous cohomology group of $\mathcal{A}$ with coefficients in $\mathcal{A}$. Hence, we obtain conditions on ${\mathcal{A}}$ for which \[ H^1_{w^*}(\mathcal{A}, \mathcal{A})=\lbrace 0\rbrace \,. \]
Let $\mathcal{A}$ be a dual Banach algebra. We investigate the first weak$^*$-continuous cohomology group of $\mathcal{A}$ with coefficients in $\mathcal{A}$. Hence, we obtain conditions on ${\mathcal{A}}$ for which \[ H^1_{w^*}(\mathcal{A}, \mathcal{A})=\lbrace 0\rbrace \,. \]
DOI : 10.5817/AM2012-1-39
Classification : 46H25
Keywords: Arens product; 2-weakly amenable; derivation
@article{10_5817_AM2012_1_39,
     author = {Eshaghi-Gordji, M. and Ebadian, A. and Habibian, F. and Hayati, B.},
     title = {Weak$^*$-continuous derivations in dual {Banach} algebras},
     journal = {Archivum mathematicum},
     pages = {39--44},
     year = {2012},
     volume = {48},
     number = {1},
     doi = {10.5817/AM2012-1-39},
     mrnumber = {2915848},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2012-1-39/}
}
TY  - JOUR
AU  - Eshaghi-Gordji, M.
AU  - Ebadian, A.
AU  - Habibian, F.
AU  - Hayati, B.
TI  - Weak$^*$-continuous derivations in dual Banach algebras
JO  - Archivum mathematicum
PY  - 2012
SP  - 39
EP  - 44
VL  - 48
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2012-1-39/
DO  - 10.5817/AM2012-1-39
LA  - en
ID  - 10_5817_AM2012_1_39
ER  - 
%0 Journal Article
%A Eshaghi-Gordji, M.
%A Ebadian, A.
%A Habibian, F.
%A Hayati, B.
%T Weak$^*$-continuous derivations in dual Banach algebras
%J Archivum mathematicum
%D 2012
%P 39-44
%V 48
%N 1
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2012-1-39/
%R 10.5817/AM2012-1-39
%G en
%F 10_5817_AM2012_1_39
Eshaghi-Gordji, M.; Ebadian, A.; Habibian, F.; Hayati, B. Weak$^*$-continuous derivations in dual Banach algebras. Archivum mathematicum, Tome 48 (2012) no. 1, pp. 39-44. doi: 10.5817/AM2012-1-39

[1] Arens, R.: The adjoint of a bilinear operation. Proc. Amer. Math. Soc. 2 (1951), 839–848. | DOI | MR | Zbl

[2] Bonsall, F. F., Duncan, J.: Complete normed algebras. Springer, Berlin, 1973. | MR | Zbl

[3] Dales, H. G.: Banach algebras and automatic continuity. Oxford, New York, 2000. | MR | Zbl

[4] Dales, H. G., Ghahramani, F., Grønbæk, N.: Derivations into iterated duals of Banach algebras. Studia Math. 128 (1998), 19–54. | MR

[5] Dales, H. G., Lau, A. T. M.: The second duals of Beurling algebras. Mem. Amer. Math. Soc. 177 (836) (2005). | MR | Zbl

[6] Daws, M.: Connes–amenability of bidual algebras. Math. Scand. 99 (2) (2006), 217–246. | MR

[7] Daws, M.: Dual Banach algebras: representations and injectivity. Studia Math. 178 (3) (2007), 231–275. | DOI | MR | Zbl

[8] Despic, M., Ghahramani, F.: Weak amenability of group algebras of locally compact groups. Canad. Math. Bull. 37 (1994), 165–167. | DOI | MR | Zbl

[9] Ghahramani, F., Laali, J.: Amenability and topological centers of the second duals of Banach algebras. Bull. Austral. Math. Soc. 65 (2002), 191–197. | DOI | MR

[10] Johnson, B. E.: Cohomology in Banach algebras. Mem. Amer. Math Soc. 127 (1972). | MR | Zbl

[11] Johnson, B. E.: Weak amenability of group algebras. Bull. London Math. Soc. 23 (1991), 281–284. | DOI | MR | Zbl

[12] Lau, A. T. M., Ülger, A.: Topological centers of certain dual algebras. Trans. Amer. Math. Soc. 348 (1996), 1191–1212. | DOI | MR | Zbl

[13] Losert, V.: The derivation problem for group algebras. Ann. of Math. (2) 168 (1) (2008), 221–246. | DOI | MR | Zbl

[14] Runde, V.: Amenability for dual Banach algebras. Studia Math. 148 (1) (2001), 47–66. | DOI | MR | Zbl

[15] Runde, V.: Lectures on amenability. Springer Verlag, Berlin–Heidelberg–New York, 2002. | MR | Zbl

[16] Sakai, S.: $C^*$–algebras and $W^*$–algebras. Springer, New York, 1971. | MR | Zbl

Cité par Sources :