Keywords: bifurcation theory; nonlinear systems; local Lyapunov-Schmidt method
@article{10_5817_AM2012_1_27,
author = {Mizeal, Ahmed Abbas and Hussain, Mudhir A. Abdul},
title = {Two-mode bifurcation in solution of a perturbed nonlinear fourth order differential equation},
journal = {Archivum mathematicum},
pages = {27--37},
year = {2012},
volume = {48},
number = {1},
doi = {10.5817/AM2012-1-27},
mrnumber = {2915847},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2012-1-27/}
}
TY - JOUR AU - Mizeal, Ahmed Abbas AU - Hussain, Mudhir A. Abdul TI - Two-mode bifurcation in solution of a perturbed nonlinear fourth order differential equation JO - Archivum mathematicum PY - 2012 SP - 27 EP - 37 VL - 48 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2012-1-27/ DO - 10.5817/AM2012-1-27 LA - en ID - 10_5817_AM2012_1_27 ER -
%0 Journal Article %A Mizeal, Ahmed Abbas %A Hussain, Mudhir A. Abdul %T Two-mode bifurcation in solution of a perturbed nonlinear fourth order differential equation %J Archivum mathematicum %D 2012 %P 27-37 %V 48 %N 1 %U http://geodesic.mathdoc.fr/articles/10.5817/AM2012-1-27/ %R 10.5817/AM2012-1-27 %G en %F 10_5817_AM2012_1_27
Mizeal, Ahmed Abbas; Hussain, Mudhir A. Abdul. Two-mode bifurcation in solution of a perturbed nonlinear fourth order differential equation. Archivum mathematicum, Tome 48 (2012) no. 1, pp. 27-37. doi: 10.5817/AM2012-1-27
[1] Abdul Hussain, M. A.: Corner singularities of smooth functions in the analysis of bifurcations balance of the elastic beams and periodic waves. Ph.D. thesis, Voronezh University, Russia., 2005.
[2] Abdul Hussain, M. A.: Bifurcation solutions of elastic beams equation with small perturbation. Int. J. Math. Anal. (Ruse) 3 (18) (2009), 879–888. | MR | Zbl
[3] Arnol’d, V. I.: Singularities of differential maps. Math. Sci. (1989).
[4] Ishibashi, Y. J.: Phenomenological theory of domain walls. Ferroelectrics 98 (1989), 193–205. | DOI
[5] Loginov, B. V.: Theory of Branching nonlinear equations in the conditions of invariance group. Fan, Tashkent (1985). | MR
[6] Sapronov, Y. I.: Regular perturbation of Fredholm maps and theorem about odd field. Works Dept. of Math., Voronezh Univ. 10 (1973), 82–88.
[7] Sapronov, Y. I.: Nonlocal finite dimensional reduction in the variational boundary value problems. Mat. Zametki 49 (1991), 94–103. | MR
[8] Sapronov, Y. I., Darinskii, B. M., Tcarev, C. L.: Bifurcation of extremely of Fredholm functionals. Voronezh Univ. (2004).
[9] Sapronov, Y. I., Zachepa, V. R.: Local analysis of Fredholm equation. Voronezh Univ. (2002).
[10] Thompson, J. M. T., Stewart, H. B.: Nonlinear Dynamics and Chaos. Chichester, Singapore, J. Wiley and Sons, 1986. | MR | Zbl
[11] Vainbergm, M. M., Trenogin, V. A.: Theory of branching solutions of nonlinear equations. Math. Sci. (1969). | MR
Cité par Sources :