Keywords: pseudo-hermitian mean curvature vector fields; proper mean curvature; biharmonic submanifolds; biminimal immersions
@article{10_5817_AM2012_1_15,
author = {Inoguchi, Jun-ichi and Lee, Ji-Eun},
title = {Submanifolds with harmonic mean curvature in {pseudo-Hermitian} geometry},
journal = {Archivum mathematicum},
pages = {15--26},
year = {2012},
volume = {48},
number = {1},
doi = {10.5817/AM2012-1-15},
mrnumber = {2915846},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2012-1-15/}
}
TY - JOUR AU - Inoguchi, Jun-ichi AU - Lee, Ji-Eun TI - Submanifolds with harmonic mean curvature in pseudo-Hermitian geometry JO - Archivum mathematicum PY - 2012 SP - 15 EP - 26 VL - 48 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2012-1-15/ DO - 10.5817/AM2012-1-15 LA - en ID - 10_5817_AM2012_1_15 ER -
Inoguchi, Jun-ichi; Lee, Ji-Eun. Submanifolds with harmonic mean curvature in pseudo-Hermitian geometry. Archivum mathematicum, Tome 48 (2012) no. 1, pp. 15-26. doi: 10.5817/AM2012-1-15
[1] Barros, M., Garay, O. J.: On submanifolds with harmonic mean curvature. Proc. Amer. Math. Soc. 123 (1995), 2545–2549. | DOI | MR | Zbl
[2] Chen, B. Y.: Some classification theorems for submanifolds in Minkowski space–time. Arch. Math. (Basel) 62 (1994), 177–182. | DOI | MR | Zbl
[3] Chen, B. Y.: Submanifolds in de Sitter space–time satisfying $\Delta H = \lambda H$. Israel J. Math. 91 (1995), 373–391. | MR | Zbl
[4] Chen, B. Y.: Report on submanifolds of finite type. Soochow J. Math. 22 (1996), 117–337. | MR | Zbl
[5] Cho, J. T., Inoguchi, J., Lee, J.-E.: Affine biharmonic submanifolds in 3–dimensional pseudo–Hermitian geometry. Abh. Math. Sem. Univ. Hamburg 79 (2009), 113–133. | DOI | MR | Zbl
[6] Defever, F.: Hypersurfaces of $E^4$ satisfying $\Delta H = \lambda H$. Michigan Math. J. 44 (1997), 355–364. | MR
[7] Defever, F.: Hypersurfaces of $E^4$ with harmonic mean curvature vector. Math. Nachr. 196 (1998), 61–69. | DOI | MR
[8] Defever, F.: Theory of semisymmetric conformally flat and biharmonic submanifolds. Balkan J. Geom. Appl. 4 (1999), 19–30. | MR | Zbl
[9] Dimitric, I.: Submanifolds of $E^m$ with harmonic mean curvature vector. Bull. Inst. Math. Acad. Sinica 20 (1992), 53–65. | MR
[10] Ferrández, A., Lucas, P., Meroño, M. A.: Biharmonic Hopf cylinders. Rocky Mountain J. Math. 28 (1998), 957–975. | DOI | MR
[11] Garay, O. J.: A classification of certain 3–dimensional conformally flat Euclidean hypersurfaces. Pacific J. Math. 162 (1994), 13–25. | DOI | MR | Zbl
[12] Hasanis, Th., Vlachos, Th.: Hypersurfaces in $E^4$ with harmonic mean curvature vector field. Math. Nachr. 172 (1995), 145–169. | DOI | MR
[13] Inoguchi, J.: Submanifolds with harmonic mean curvature vector field in contact 3-manifolds. Colloq. Math. 100 (2004), 163–179. | DOI | MR | Zbl
[14] Inoguchi, J.: Biminimal submanifolds in 3–dimensional contact manifolds. Balkan J. Geom. Appl. 12 (1) (2007), 56–67. | MR
[15] Inoguchi, J., Lee, J.-E.: Almost contact curves in normal almost contact $3$-manifolds. submitted.
[16] Inoguchi, J., Lee, J.-E.: Biminimal curves in $2$–dimensional space forms. submitted.
[17] Lee, J.-E.: On Legendre curves in contact pseudo–Hermitian 3–manifolds. Bull. Austral. Math. Soc. 81 (1) (2010), 156–164. | DOI | MR | Zbl
[18] Loubeau, E., Montaldo, S.: Biminimal immersions. Proc. Edinburgh Math. Soc. (2) 51 (2008), 421–437. | MR | Zbl
[19] Ogiue, K.: On fiberings of almost contact manifolds. Kōdai Math. Sem. Rep. 17 (1965), 53–62. | DOI | MR | Zbl
[20] O’Neill, B.: The fundamental equations of a submersion. Michigan Math. J. 13 (1966), 459–469. | DOI | MR
[21] Tanaka, N.: On non–degenerate real hypersurfaces, graded Lie algebras and Cartan connections. Japan. J. Math. (N.S.) 2 (1) (1976), 131–190. | MR | Zbl
[22] Tanno, S.: Variational problems on contact Riemannian manifolds. Trans. Amer. Math. Soc. 314 (1989), 349–379. | DOI | MR | Zbl
[23] Webster, S. M.: Pseudohermitian structures on a real hypersurface. J. Differential Geom. 13 (1978), 25–41. | MR
Cité par Sources :