Submanifolds with harmonic mean curvature in pseudo-Hermitian geometry
Archivum mathematicum, Tome 48 (2012) no. 1, pp. 15-26 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We classify Hopf cylinders with proper mean curvature vector field in Sasakian 3-manifolds with respect to the Tanaka-Webster connection.
We classify Hopf cylinders with proper mean curvature vector field in Sasakian 3-manifolds with respect to the Tanaka-Webster connection.
DOI : 10.5817/AM2012-1-15
Classification : 58E20
Keywords: pseudo-hermitian mean curvature vector fields; proper mean curvature; biharmonic submanifolds; biminimal immersions
@article{10_5817_AM2012_1_15,
     author = {Inoguchi, Jun-ichi and Lee, Ji-Eun},
     title = {Submanifolds with harmonic mean curvature in {pseudo-Hermitian} geometry},
     journal = {Archivum mathematicum},
     pages = {15--26},
     year = {2012},
     volume = {48},
     number = {1},
     doi = {10.5817/AM2012-1-15},
     mrnumber = {2915846},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2012-1-15/}
}
TY  - JOUR
AU  - Inoguchi, Jun-ichi
AU  - Lee, Ji-Eun
TI  - Submanifolds with harmonic mean curvature in pseudo-Hermitian geometry
JO  - Archivum mathematicum
PY  - 2012
SP  - 15
EP  - 26
VL  - 48
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2012-1-15/
DO  - 10.5817/AM2012-1-15
LA  - en
ID  - 10_5817_AM2012_1_15
ER  - 
%0 Journal Article
%A Inoguchi, Jun-ichi
%A Lee, Ji-Eun
%T Submanifolds with harmonic mean curvature in pseudo-Hermitian geometry
%J Archivum mathematicum
%D 2012
%P 15-26
%V 48
%N 1
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2012-1-15/
%R 10.5817/AM2012-1-15
%G en
%F 10_5817_AM2012_1_15
Inoguchi, Jun-ichi; Lee, Ji-Eun. Submanifolds with harmonic mean curvature in pseudo-Hermitian geometry. Archivum mathematicum, Tome 48 (2012) no. 1, pp. 15-26. doi: 10.5817/AM2012-1-15

[1] Barros, M., Garay, O. J.: On submanifolds with harmonic mean curvature. Proc. Amer. Math. Soc. 123 (1995), 2545–2549. | DOI | MR | Zbl

[2] Chen, B. Y.: Some classification theorems for submanifolds in Minkowski space–time. Arch. Math. (Basel) 62 (1994), 177–182. | DOI | MR | Zbl

[3] Chen, B. Y.: Submanifolds in de Sitter space–time satisfying $\Delta H = \lambda H$. Israel J. Math. 91 (1995), 373–391. | MR | Zbl

[4] Chen, B. Y.: Report on submanifolds of finite type. Soochow J. Math. 22 (1996), 117–337. | MR | Zbl

[5] Cho, J. T., Inoguchi, J., Lee, J.-E.: Affine biharmonic submanifolds in 3–dimensional pseudo–Hermitian geometry. Abh. Math. Sem. Univ. Hamburg 79 (2009), 113–133. | DOI | MR | Zbl

[6] Defever, F.: Hypersurfaces of $E^4$ satisfying $\Delta H = \lambda H$. Michigan Math. J. 44 (1997), 355–364. | MR

[7] Defever, F.: Hypersurfaces of $E^4$ with harmonic mean curvature vector. Math. Nachr. 196 (1998), 61–69. | DOI | MR

[8] Defever, F.: Theory of semisymmetric conformally flat and biharmonic submanifolds. Balkan J. Geom. Appl. 4 (1999), 19–30. | MR | Zbl

[9] Dimitric, I.: Submanifolds of $E^m$ with harmonic mean curvature vector. Bull. Inst. Math. Acad. Sinica 20 (1992), 53–65. | MR

[10] Ferrández, A., Lucas, P., Meroño, M. A.: Biharmonic Hopf cylinders. Rocky Mountain J. Math. 28 (1998), 957–975. | DOI | MR

[11] Garay, O. J.: A classification of certain 3–dimensional conformally flat Euclidean hypersurfaces. Pacific J. Math. 162 (1994), 13–25. | DOI | MR | Zbl

[12] Hasanis, Th., Vlachos, Th.: Hypersurfaces in $E^4$ with harmonic mean curvature vector field. Math. Nachr. 172 (1995), 145–169. | DOI | MR

[13] Inoguchi, J.: Submanifolds with harmonic mean curvature vector field in contact 3-manifolds. Colloq. Math. 100 (2004), 163–179. | DOI | MR | Zbl

[14] Inoguchi, J.: Biminimal submanifolds in 3–dimensional contact manifolds. Balkan J. Geom. Appl. 12 (1) (2007), 56–67. | MR

[15] Inoguchi, J., Lee, J.-E.: Almost contact curves in normal almost contact $3$-manifolds. submitted.

[16] Inoguchi, J., Lee, J.-E.: Biminimal curves in $2$–dimensional space forms. submitted.

[17] Lee, J.-E.: On Legendre curves in contact pseudo–Hermitian 3–manifolds. Bull. Austral. Math. Soc. 81 (1) (2010), 156–164. | DOI | MR | Zbl

[18] Loubeau, E., Montaldo, S.: Biminimal immersions. Proc. Edinburgh Math. Soc. (2) 51 (2008), 421–437. | MR | Zbl

[19] Ogiue, K.: On fiberings of almost contact manifolds. Kōdai Math. Sem. Rep. 17 (1965), 53–62. | DOI | MR | Zbl

[20] O’Neill, B.: The fundamental equations of a submersion. Michigan Math. J. 13 (1966), 459–469. | DOI | MR

[21] Tanaka, N.: On non–degenerate real hypersurfaces, graded Lie algebras and Cartan connections. Japan. J. Math. (N.S.) 2 (1) (1976), 131–190. | MR | Zbl

[22] Tanno, S.: Variational problems on contact Riemannian manifolds. Trans. Amer. Math. Soc. 314 (1989), 349–379. | DOI | MR | Zbl

[23] Webster, S. M.: Pseudohermitian structures on a real hypersurface. J. Differential Geom. 13 (1978), 25–41. | MR

Cité par Sources :