Probabilités sur le graphe complet : l’exemple des arbres couvrants uniforme et minimal
Journées mathématiques X-UPS, Arbres et marches aléatoires (2016), pp. 59-102.

Voir la notice de l'acte provenant de la source Numdam

Ce texte propose quelques exemples d’analyse de grandes structures combinatoires aléatoires, que l’on peut définir naturellement en termes de modèles simples d’arbres couvrants sur le graphe complet.

Publié le :
DOI : 10.5802/xups.2016-02

Miermont, Grégory 1

1 Université de Lyon, ÉNS de Lyon & Institut Universitaire de France
@article{XUPS_2016____59_0,
     author = {Miermont, Gr\'egory},
     title = {Probabilit\'es sur le graphe complet~: l{\textquoteright}exemple des arbres couvrants uniforme et minimal},
     journal = {Journ\'ees math\'ematiques X-UPS},
     pages = {59--102},
     publisher = {Les \'Editions de l{\textquoteright}\'Ecole polytechnique},
     year = {2016},
     doi = {10.5802/xups.2016-02},
     language = {fr},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/xups.2016-02/}
}
TY  - JOUR
AU  - Miermont, Grégory
TI  - Probabilités sur le graphe complet : l’exemple des arbres couvrants uniforme et minimal
JO  - Journées mathématiques X-UPS
PY  - 2016
SP  - 59
EP  - 102
PB  - Les Éditions de l’École polytechnique
UR  - http://geodesic.mathdoc.fr/articles/10.5802/xups.2016-02/
DO  - 10.5802/xups.2016-02
LA  - fr
ID  - XUPS_2016____59_0
ER  - 
%0 Journal Article
%A Miermont, Grégory
%T Probabilités sur le graphe complet : l’exemple des arbres couvrants uniforme et minimal
%J Journées mathématiques X-UPS
%D 2016
%P 59-102
%I Les Éditions de l’École polytechnique
%U http://geodesic.mathdoc.fr/articles/10.5802/xups.2016-02/
%R 10.5802/xups.2016-02
%G fr
%F XUPS_2016____59_0
Miermont, Grégory. Probabilités sur le graphe complet : l’exemple des arbres couvrants uniforme et minimal. Journées mathématiques X-UPS, Arbres et marches aléatoires (2016), pp. 59-102. doi : 10.5802/xups.2016-02. http://geodesic.mathdoc.fr/articles/10.5802/xups.2016-02/

[ABBG10] Addario-Berry, L.; Broutin, N.; Goldschmidt, C. Critical random graphs : limiting constructions and distributional properties, Electron. J. Probab., Volume 15 (2010), p. 741-775, art.  no. 25, | DOI | MR | Zbl

[ABBG12] Addario-Berry, L.; Broutin, N.; Goldschmidt, C. The continuum limit of critical random graphs, Probab. Theory Relat. Fields, Volume 152 (2012) no. 3-4, pp. 367-406 | DOI | MR | Zbl

[ABBGM17] Addario-Berry, L.; Broutin, N.; Goldschmidt, C.; Miermont, G. The scaling limit of the minimum spanning tree of the complete graph, Ann. Probab., Volume 45 (2017) no. 5, pp. 3075-3144 | Zbl | MR | DOI

[Ald90] Aldous, D. The random walk construction of uniform spanning trees and uniform labelled trees, SIAM J. Discrete Math., Volume 3 (1990) no. 4, pp. 450-465 | DOI | MR | Zbl

[Ald91] Aldous, D. The continuum random tree. I, Ann. Probab., Volume 19 (1991) no. 1, pp. 1-28 | Zbl | MR | DOI

[Ald92] Aldous, D. Asymptotics in the random assignment problem, Probab. Theory Relat. Fields, Volume 93 (1992) no. 4, pp. 507-534 | MR | DOI | Zbl

[Ald93] Aldous, D. The continuum random tree. III, Ann. Probab., Volume 21 (1993) no. 1, pp. 248-289 | MR | DOI | Zbl

[AP98] Aldous, D.; Pitman, J. The standard additive coalescent, Ann. Probab., Volume 26 (1998) no. 4, pp. 1703-1726 | DOI | MR | Zbl

[AS92] Aldous, D.; Steele, J. M. Asymptotics for Euclidean minimal spanning trees on random points, Probab. Theory Relat. Fields, Volume 92 (1992) no. 2, pp. 247-258 | DOI | MR | Zbl

[AS04] Aldous, D.; Steele, J. M. The objective method : probabilistic combinatorial optimization and local weak convergence, Probability on discrete structures (Encyclopaedia Math. Sci.), Volume 110, Springer, Berlin, 2004, pp. 1-72 | DOI | MR | Zbl

[BBI01] Burago, D.; Burago, Y.; Ivanov, S. A course in metric geometry, Graduate Studies in Math., 33, American Mathematical Society, Providence, RI, 2001 | DOI | MR

[Ber06] Bertoin, J. Random fragmentation and coagulation processes, Cambridge Studies in Advanced Math., 102, Cambridge University Press, Cambridge, 2006 | MR | DOI

[BS01] Benjamini, I.; Schramm, O. Recurrence of distributional limits of finite planar graphs, Electron. J. Probab., Volume 6 (2001), 23 | DOI | MR | Zbl

[CL02] Chassaing, P.; Louchard, G. Phase transition for parking blocks, Brownian excursion and coalescence, Random Structures Algorithms, Volume 21 (2002) no. 1, pp. 76-119 | DOI | MR | Zbl

[CP00] Camarri, M.; Pitman, J. Limit distributions and random trees derived from the birthday problem with unequal probabilities, Electron. J. Probab., Volume 5 (2000), 2 | MR | DOI | Zbl

[DLG05] Duquesne, T.; Le Gall, J.-F. Probabilistic and fractal aspects of Lévy trees, Probab. Theory Relat. Fields, Volume 131 (2005) no. 4, pp. 553-603 | MR | DOI | Zbl

[DS98] Derbez, E.; Slade, G. The scaling limit of lattice trees in high dimensions, Comm. Math. Phys., Volume 193 (1998) no. 1, pp. 69-104 | DOI | MR | Zbl

[ER60] Erdős, P.; Rényi, A. On the evolution of random graphs, Magyar Tud. Akad. Mat. Kutató Int. Közl., Volume 5 (1960), pp. 17-61 | MR | Zbl

[Fri85] Frieze, A. M. On the value of a random minimum spanning tree problem, Discrete Appl. Math., Volume 10 (1985) no. 1, pp. 47-56 | DOI | MR | Zbl

[Kor16] Kortchemski, Igor Arbres et marches aléatoires, Arbres et marches aléatoires (Journées X-UPS), Les Éditions de l’École polytechnique, Palaiseau, 2016 (ce volume) | DOI | MR | Zbl

[LG93] Le Gall, Jean-François The uniform random tree in a Brownian excursion, Probab. Theory Relat. Fields, Volume 96 (1993) no. 3, pp. 369-383 | DOI | MR | Zbl

[LG05] Le Gall, Jean-François Random trees and applications, Probab. Surv., Volume 2 (2005), pp. 245-311 | DOI | MR | Zbl

[LGM12] Le Gall, Jean-François; Miermont, G. Scaling limits of random trees and planar maps, Probability and statistical physics in two and more dimensions (Clay Math. Proc.), Volume 15, American Mathematical Society, Providence, RI, 2012, pp. 155-211 | Zbl | MR

[NP89] Neveu, J.; Pitman, J. The branching process in a Brownian excursion, Séminaire de Probabilités, XXIII (Lect. Notes in Math.), Volume 1372, Springer, Berlin, 1989, pp. 248-257 | DOI | MR | mathdoc-id | Zbl

[Pit99] Pitman, J. Coalescent random forests, J. Combin. Theory Ser. A, Volume 85 (1999) no. 2, pp. 165-193 | DOI | MR | Zbl

[Wil96] Wilson, D. B. Generating random spanning trees more quickly than the cover time, Proceedings of the Twenty-eighth Annual ACM Symposium on the Theory of Computing (Philadelphia, PA, 1996), ACM, New York, 1996, pp. 296-303 | MR | DOI | Zbl

Cité par Sources :