Let be a prime, and let be the Legendre symbol. Let and . We mainly prove that
where is the number of positive integers with , and with is the least nonnegative residue of modulo .
Accepté le :
Publié le :
Hou, Qing-Hu  1 ; Pan, Hao  2 ; Sun, Zhi-Wei  3
CC-BY 4.0
@article{CRMATH_2022__360_G9_1065_0,
author = {Hou, Qing-Hu and Pan, Hao and Sun, Zhi-Wei},
title = {A new theorem on quadratic residues modulo primes},
journal = {Comptes Rendus. Math\'ematique},
pages = {1065--1069},
year = {2022},
publisher = {Acad\'emie des sciences, Paris},
volume = {360},
number = {G9},
doi = {10.5802/crmath.371},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5802/crmath.371/}
}
TY - JOUR AU - Hou, Qing-Hu AU - Pan, Hao AU - Sun, Zhi-Wei TI - A new theorem on quadratic residues modulo primes JO - Comptes Rendus. Mathématique PY - 2022 SP - 1065 EP - 1069 VL - 360 IS - G9 PB - Académie des sciences, Paris UR - http://geodesic.mathdoc.fr/articles/10.5802/crmath.371/ DO - 10.5802/crmath.371 LA - en ID - CRMATH_2022__360_G9_1065_0 ER -
%0 Journal Article %A Hou, Qing-Hu %A Pan, Hao %A Sun, Zhi-Wei %T A new theorem on quadratic residues modulo primes %J Comptes Rendus. Mathématique %D 2022 %P 1065-1069 %V 360 %N G9 %I Académie des sciences, Paris %U http://geodesic.mathdoc.fr/articles/10.5802/crmath.371/ %R 10.5802/crmath.371 %G en %F CRMATH_2022__360_G9_1065_0
Hou, Qing-Hu; Pan, Hao; Sun, Zhi-Wei. A new theorem on quadratic residues modulo primes. Comptes Rendus. Mathématique, Tome 360 (2022) no. G9, pp. 1065-1069. doi: 10.5802/crmath.371
Cité par Sources :