Gaussian integrals depending on a quantum parameter in finite dimension
The Teaching of Mathematics, XXV (2022) no. 2, p. 107
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
A common theme in mathematics is the evaluation of Gauss integrals. This, coupled with the fact that they are used in different branches of science, makes the topic always actual and interesting. In these notes we shall analyze a particular class of Gaussian integrals that depend on the quantum parameter $\hbar$. Starting from classical results, we will present an overview on methods, examples and analogies regarding the practice of solving quantum Gaussian integrals.
Classification :
97I50, 97I80 I55, I85
Keywords: Gaussian integral, quantization, special functions, arithmetic-geometric mean.
Keywords: Gaussian integral, quantization, special functions, arithmetic-geometric mean.
@article{10_57016_TM_ZOVB7625,
author = {Simone Camosso},
title = {Gaussian integrals depending on a quantum parameter in finite dimension},
journal = {The Teaching of Mathematics},
pages = {107 },
year = {2022},
volume = {XXV},
number = {2},
doi = {10.57016/TM-ZOVB7625},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.57016/TM-ZOVB7625/}
}
TY - JOUR AU - Simone Camosso TI - Gaussian integrals depending on a quantum parameter in finite dimension JO - The Teaching of Mathematics PY - 2022 SP - 107 VL - XXV IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.57016/TM-ZOVB7625/ DO - 10.57016/TM-ZOVB7625 LA - en ID - 10_57016_TM_ZOVB7625 ER -
Simone Camosso. Gaussian integrals depending on a quantum parameter in finite dimension. The Teaching of Mathematics, XXV (2022) no. 2, p. 107 . doi: 10.57016/TM-ZOVB7625
Cité par Sources :