The limit of the increments of the Hölder means of asymptotically arithmetic sequences
The Teaching of Mathematics, XXVII (2024) no. 1, p. 1
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We call a sequence of real numbers, $\{a_n\}_{n\geq1}$, an asymptotically arithmetic sequence, if its increment $a_{n+1}-a_{n}$ approaches a real number $d$, as $n\to\infty$. For each $p\in[-\infty,\infty]$, we compute the limit of the increment $H_p(a_1,\dots,a_n,a_{n+1})-H_p(a_1,\dots,a_n)$, of the $p$-Hölder mean sequence, $\{H_p(a_1,\dots,a_n)\}_{n\geq1}$, of an asymptotically arithmetic sequence $\{a_n\}_{n\geq1}$, with positive terms. Moreover, for $p\leq-1$, we not only show that this limit is $0$, but we also compute the rate with which the increment approaches zero.
Classification :
97I30 I35
Keywords: Hölder means, Stolz-Cesàro theorem, D'Alembert theorem, Lagrange Mean Value theorem, Lalescu sequence.
Keywords: Hölder means, Stolz-Cesàro theorem, D'Alembert theorem, Lagrange Mean Value theorem, Lalescu sequence.
@article{10_57016_TM_PVJD7224,
author = {Dorin M\u{a}rghidanu and Aurel I. Stan},
title = {The limit of the increments of the {H\"older} means of asymptotically arithmetic sequences},
journal = {The Teaching of Mathematics},
pages = {1 },
publisher = {mathdoc},
volume = {XXVII},
number = {1},
year = {2024},
doi = {10.57016/TM-PVJD7224},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.57016/TM-PVJD7224/}
}
TY - JOUR AU - Dorin Mărghidanu AU - Aurel I. Stan TI - The limit of the increments of the Hölder means of asymptotically arithmetic sequences JO - The Teaching of Mathematics PY - 2024 SP - 1 VL - XXVII IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.57016/TM-PVJD7224/ DO - 10.57016/TM-PVJD7224 LA - en ID - 10_57016_TM_PVJD7224 ER -
%0 Journal Article %A Dorin Mărghidanu %A Aurel I. Stan %T The limit of the increments of the Hölder means of asymptotically arithmetic sequences %J The Teaching of Mathematics %D 2024 %P 1 %V XXVII %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.57016/TM-PVJD7224/ %R 10.57016/TM-PVJD7224 %G en %F 10_57016_TM_PVJD7224
Dorin Mărghidanu; Aurel I. Stan. The limit of the increments of the Hölder means of asymptotically arithmetic sequences. The Teaching of Mathematics, XXVII (2024) no. 1, p. 1 . doi: 10.57016/TM-PVJD7224
Cité par Sources :