Bloch’s theorem for heat mappings
Rendiconti del Seminario Matematico della Università di Padova, Tome 147 (2022), pp. 91-109
Cet article a éte moissonné depuis la source Numdam
In this paper we give a proof via the contraction mapping principle of a Bloch-type theorem for (normalised) heat Bochner–Takahashi -mappings, that is, mappings that are solutions of the heat equation, and which also satisfy a weak form of -quasiregularity. We also provide estimates from below for the radius of the univalent balls covered by this family of functions.
@article{RSMUP_2022__147__91_0,
author = {Cortissoz, Jean C.},
title = {Bloch{\textquoteright}s theorem for heat mappings},
journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
pages = {91--109},
year = {2022},
volume = {147},
doi = {10.4171/rsmup/92},
mrnumber = {4450785},
zbl = {1494.30041},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4171/rsmup/92/}
}
Cortissoz, Jean C. Bloch’s theorem for heat mappings. Rendiconti del Seminario Matematico della Università di Padova, Tome 147 (2022), pp. 91-109. doi: 10.4171/rsmup/92
Cité par Sources :