Voir la notice de l'article provenant de la source Numdam
In this paper, we consider the nonlinear fractional critical equation with zero Dirichlet boundary condition , in and on , where is a positive function, is a regular bounded domain of , and , represents the spectral fractional Laplacian operator in with zero Dirichlet boundary condition. We prove a version of Morse lemmas at infinity for this problem. We also exhibit a relevant application of our novel result. More precisely, we characterize the critical points at infinity of the associated variational problem and we prove an existence result for and .
@article{RSMUP_2021__146__1_0, author = {Abdelhedi, Wael and Hajaiej, Hichem and Mhamdi, Zeinab}, title = {A {Morse} lemma at infinity for nonlinear elliptic fractional equations}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {1--42}, volume = {146}, year = {2021}, doi = {10.4171/rsmup/82}, mrnumber = {4349650}, zbl = {1484.35211}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4171/rsmup/82/} }
TY - JOUR AU - Abdelhedi, Wael AU - Hajaiej, Hichem AU - Mhamdi, Zeinab TI - A Morse lemma at infinity for nonlinear elliptic fractional equations JO - Rendiconti del Seminario Matematico della Università di Padova PY - 2021 SP - 1 EP - 42 VL - 146 UR - http://geodesic.mathdoc.fr/articles/10.4171/rsmup/82/ DO - 10.4171/rsmup/82 LA - en ID - RSMUP_2021__146__1_0 ER -
%0 Journal Article %A Abdelhedi, Wael %A Hajaiej, Hichem %A Mhamdi, Zeinab %T A Morse lemma at infinity for nonlinear elliptic fractional equations %J Rendiconti del Seminario Matematico della Università di Padova %D 2021 %P 1-42 %V 146 %U http://geodesic.mathdoc.fr/articles/10.4171/rsmup/82/ %R 10.4171/rsmup/82 %G en %F RSMUP_2021__146__1_0
Abdelhedi, Wael; Hajaiej, Hichem; Mhamdi, Zeinab. A Morse lemma at infinity for nonlinear elliptic fractional equations. Rendiconti del Seminario Matematico della Università di Padova, Tome 146 (2021), pp. 1-42. doi : 10.4171/rsmup/82. http://geodesic.mathdoc.fr/articles/10.4171/rsmup/82/
Cité par Sources :