Comparison between rigid and crystalline syntomic cohomology for strictly semistable log schemes with boundary
Rendiconti del Seminario Matematico della Università di Padova, Tome 145 (2021), pp. 213-291
Cet article a éte moissonné depuis la source Numdam
We introduce rigid syntomic cohomology for strictly semistable log schemes over a complete discrete valuation ring of mixed characteristic In case a good compactification exists, we compare this cohomology theory to Nekovář–Nizioł’s crystalline syntomic cohomology of the generic fibre. The main ingredients are a modification of Große-Klönne’s rigid Hyodo–Kato theory and a generalization of it for strictly semistable log schemes with boundary.
@article{RSMUP_2021__145__213_0,
author = {Ertl, Veronika and Yamada, Kazuki},
title = {Comparison between rigid and crystalline syntomic cohomology for strictly semistable log schemes with boundary},
journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
pages = {213--291},
year = {2021},
volume = {145},
doi = {10.4171/rsmup/81},
mrnumber = {4261656},
zbl = {1478.14040},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4171/rsmup/81/}
}
TY - JOUR AU - Ertl, Veronika AU - Yamada, Kazuki TI - Comparison between rigid and crystalline syntomic cohomology for strictly semistable log schemes with boundary JO - Rendiconti del Seminario Matematico della Università di Padova PY - 2021 SP - 213 EP - 291 VL - 145 UR - http://geodesic.mathdoc.fr/articles/10.4171/rsmup/81/ DO - 10.4171/rsmup/81 LA - en ID - RSMUP_2021__145__213_0 ER -
%0 Journal Article %A Ertl, Veronika %A Yamada, Kazuki %T Comparison between rigid and crystalline syntomic cohomology for strictly semistable log schemes with boundary %J Rendiconti del Seminario Matematico della Università di Padova %D 2021 %P 213-291 %V 145 %U http://geodesic.mathdoc.fr/articles/10.4171/rsmup/81/ %R 10.4171/rsmup/81 %G en %F RSMUP_2021__145__213_0
Ertl, Veronika; Yamada, Kazuki. Comparison between rigid and crystalline syntomic cohomology for strictly semistable log schemes with boundary. Rendiconti del Seminario Matematico della Università di Padova, Tome 145 (2021), pp. 213-291. doi: 10.4171/rsmup/81
Cité par Sources :