Ding modules and dimensions over formal triangular matrix rings
Rendiconti del Seminario Matematico della Università di Padova, Tome 148 (2022), pp. 1-22
Voir la notice de l'article provenant de la source Numdam
Let be a formal triangular matrix ring, where and are rings and is a -bimodule. We prove: (1) If and have finite flat dimensions, then a left -module is Ding projective if and only if and are Ding projective and the morphism is a monomorphism. (2) If is a right coherent ring, has finite flat dimension, is finitely presented and has finite projective or -injective dimension, then a right -module is Ding injective if and only if and are Ding injective and the morphism is an epimorphism. As a consequence, we describe Ding projective and Ding injective dimensions of a -module.
@article{RSMUP_2022__148__1_0,
author = {Mao, Lixin},
title = {Ding modules and dimensions over formal triangular matrix rings},
journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
pages = {1--22},
volume = {148},
year = {2022},
doi = {10.4171/rsmup/100},
mrnumber = {4542370},
zbl = {07673819},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4171/rsmup/100/}
}
TY - JOUR AU - Mao, Lixin TI - Ding modules and dimensions over formal triangular matrix rings JO - Rendiconti del Seminario Matematico della Università di Padova PY - 2022 SP - 1 EP - 22 VL - 148 UR - http://geodesic.mathdoc.fr/articles/10.4171/rsmup/100/ DO - 10.4171/rsmup/100 LA - en ID - RSMUP_2022__148__1_0 ER -
Mao, Lixin. Ding modules and dimensions over formal triangular matrix rings. Rendiconti del Seminario Matematico della Università di Padova, Tome 148 (2022), pp. 1-22. doi: 10.4171/rsmup/100
Cité par Sources :