A general Fredholm theory I: a splicing-based differential geometry
Journal of the European Mathematical Society, Tome 9 (2007) no. 4, pp. 841-876.

Voir la notice de l'article provenant de la source EMS Press

This is the first paper in a series introducing a generalized Fredholm theory in a new class of smooth spaces called polyfolds. These spaces, in general, are locally not homeomorphic to open sets in Banach spaces. The present paper describes some of the differential geometry of this new class of spaces. The theory will be illustrated in upcoming papers by applications to Floer Theory, Gromov-Witten Theory, and Symplectic Field Theory.
DOI : 10.4171/jems/99
Classification : 46-XX, 00-XX, 53-XX, 58-XX
Keywords: Banach scales, sc-smoothness, M-polyfolds, splicings, splicing cores, fillers, strong bundles
@article{JEMS_2007_9_4_a8,
     author = {Helmut W. Hofer and Kris Wysocki and Eduard Zehnder},
     title = {A general {Fredholm} theory {I:} a splicing-based differential geometry},
     journal = {Journal of the European Mathematical Society},
     pages = {841--876},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {2007},
     doi = {10.4171/jems/99},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/99/}
}
TY  - JOUR
AU  - Helmut W. Hofer
AU  - Kris Wysocki
AU  - Eduard Zehnder
TI  - A general Fredholm theory I: a splicing-based differential geometry
JO  - Journal of the European Mathematical Society
PY  - 2007
SP  - 841
EP  - 876
VL  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/99/
DO  - 10.4171/jems/99
ID  - JEMS_2007_9_4_a8
ER  - 
%0 Journal Article
%A Helmut W. Hofer
%A Kris Wysocki
%A Eduard Zehnder
%T A general Fredholm theory I: a splicing-based differential geometry
%J Journal of the European Mathematical Society
%D 2007
%P 841-876
%V 9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/99/
%R 10.4171/jems/99
%F JEMS_2007_9_4_a8
Helmut W. Hofer; Kris Wysocki; Eduard Zehnder. A general Fredholm theory I: a splicing-based differential geometry. Journal of the European Mathematical Society, Tome 9 (2007) no. 4, pp. 841-876. doi : 10.4171/jems/99. http://geodesic.mathdoc.fr/articles/10.4171/jems/99/

Cité par Sources :