A general Fredholm theory I: a splicing-based differential geometry
Journal of the European Mathematical Society, Tome 9 (2007) no. 4, pp. 841-876
Voir la notice de l'article provenant de la source EMS Press
This is the first paper in a series introducing a generalized Fredholm theory in a new class of smooth spaces called polyfolds. These spaces, in general, are locally not homeomorphic to open sets in Banach spaces. The present paper describes some of the differential geometry of this new class of spaces. The theory will be illustrated in upcoming papers by applications to Floer Theory, Gromov-Witten Theory, and Symplectic Field Theory.
Classification :
46-XX, 00-XX, 53-XX, 58-XX
Keywords: Banach scales, sc-smoothness, M-polyfolds, splicings, splicing cores, fillers, strong bundles
Keywords: Banach scales, sc-smoothness, M-polyfolds, splicings, splicing cores, fillers, strong bundles
@article{JEMS_2007_9_4_a8,
author = {Helmut W. Hofer and Kris Wysocki and Eduard Zehnder},
title = {A general {Fredholm} theory {I:} a splicing-based differential geometry},
journal = {Journal of the European Mathematical Society},
pages = {841--876},
publisher = {mathdoc},
volume = {9},
number = {4},
year = {2007},
doi = {10.4171/jems/99},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/99/}
}
TY - JOUR AU - Helmut W. Hofer AU - Kris Wysocki AU - Eduard Zehnder TI - A general Fredholm theory I: a splicing-based differential geometry JO - Journal of the European Mathematical Society PY - 2007 SP - 841 EP - 876 VL - 9 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/99/ DO - 10.4171/jems/99 ID - JEMS_2007_9_4_a8 ER -
%0 Journal Article %A Helmut W. Hofer %A Kris Wysocki %A Eduard Zehnder %T A general Fredholm theory I: a splicing-based differential geometry %J Journal of the European Mathematical Society %D 2007 %P 841-876 %V 9 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4171/jems/99/ %R 10.4171/jems/99 %F JEMS_2007_9_4_a8
Helmut W. Hofer; Kris Wysocki; Eduard Zehnder. A general Fredholm theory I: a splicing-based differential geometry. Journal of the European Mathematical Society, Tome 9 (2007) no. 4, pp. 841-876. doi: 10.4171/jems/99
Cité par Sources :