On the number of components of the symplectic representatives of the canonical class
Journal of the European Mathematical Society, Tome 9 (2007) no. 4, pp. 789-800.

Voir la notice de l'article provenant de la source EMS Press

In this paper we show that there exists a family of simply connected, symplectic 4-manifolds such that the (Poincar\'e dual of the) canonical class admits both connected and disconnected symplectic representatives. This answers a question of Fintushel and Stern.
DOI : 10.4171/jems/97
Classification : 57-XX, 00-XX
Keywords: Sympectic 4-manifolds, canonical class
@article{JEMS_2007_9_4_a6,
     author = {Stefano Vidussi},
     title = {On the number of components of the symplectic representatives of the canonical class},
     journal = {Journal of the European Mathematical Society},
     pages = {789--800},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {2007},
     doi = {10.4171/jems/97},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/97/}
}
TY  - JOUR
AU  - Stefano Vidussi
TI  - On the number of components of the symplectic representatives of the canonical class
JO  - Journal of the European Mathematical Society
PY  - 2007
SP  - 789
EP  - 800
VL  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/97/
DO  - 10.4171/jems/97
ID  - JEMS_2007_9_4_a6
ER  - 
%0 Journal Article
%A Stefano Vidussi
%T On the number of components of the symplectic representatives of the canonical class
%J Journal of the European Mathematical Society
%D 2007
%P 789-800
%V 9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/97/
%R 10.4171/jems/97
%F JEMS_2007_9_4_a6
Stefano Vidussi. On the number of components of the symplectic representatives of the canonical class. Journal of the European Mathematical Society, Tome 9 (2007) no. 4, pp. 789-800. doi : 10.4171/jems/97. http://geodesic.mathdoc.fr/articles/10.4171/jems/97/

Cité par Sources :