On the number of components of the symplectic representatives of the canonical class
Journal of the European Mathematical Society, Tome 9 (2007) no. 4, pp. 789-800
Cet article a éte moissonné depuis la source EMS Press
In this paper we show that there exists a family of simply connected, symplectic 4-manifolds such that the (Poincar\'e dual of the) canonical class admits both connected and disconnected symplectic representatives. This answers a question of Fintushel and Stern.
Classification :
57-XX, 00-XX
Keywords: Sympectic 4-manifolds, canonical class
Keywords: Sympectic 4-manifolds, canonical class
@article{JEMS_2007_9_4_a6,
author = {Stefano Vidussi},
title = {On the number of components of the symplectic representatives of the canonical class},
journal = {Journal of the European Mathematical Society},
pages = {789--800},
year = {2007},
volume = {9},
number = {4},
doi = {10.4171/jems/97},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/97/}
}
TY - JOUR AU - Stefano Vidussi TI - On the number of components of the symplectic representatives of the canonical class JO - Journal of the European Mathematical Society PY - 2007 SP - 789 EP - 800 VL - 9 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/97/ DO - 10.4171/jems/97 ID - JEMS_2007_9_4_a6 ER -
Stefano Vidussi. On the number of components of the symplectic representatives of the canonical class. Journal of the European Mathematical Society, Tome 9 (2007) no. 4, pp. 789-800. doi: 10.4171/jems/97
Cité par Sources :