Even sets of nodes on sextic surfaces
Journal of the European Mathematical Society, Tome 9 (2007) no. 4, pp. 705-737.

Voir la notice de l'article provenant de la source EMS Press

We determine the possible even sets of nodes on sextic surfaces in P3, showing in particular that their cardinalities are exactly the numbers in the set {24,32,40,56}. We also show that all the possible cases admit an explicit description. The methods that we use are an interplay of coding theory and projective geometry on one hand, of homological and computer algebra on the other.
DOI : 10.4171/jems/94
Classification : 14-XX, 00-XX
Keywords:
@article{JEMS_2007_9_4_a3,
     author = {Fabrizio Catanese and Fabio Tonoli},
     title = {Even sets of nodes on sextic surfaces},
     journal = {Journal of the European Mathematical Society},
     pages = {705--737},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {2007},
     doi = {10.4171/jems/94},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/94/}
}
TY  - JOUR
AU  - Fabrizio Catanese
AU  - Fabio Tonoli
TI  - Even sets of nodes on sextic surfaces
JO  - Journal of the European Mathematical Society
PY  - 2007
SP  - 705
EP  - 737
VL  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/94/
DO  - 10.4171/jems/94
ID  - JEMS_2007_9_4_a3
ER  - 
%0 Journal Article
%A Fabrizio Catanese
%A Fabio Tonoli
%T Even sets of nodes on sextic surfaces
%J Journal of the European Mathematical Society
%D 2007
%P 705-737
%V 9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/94/
%R 10.4171/jems/94
%F JEMS_2007_9_4_a3
Fabrizio Catanese; Fabio Tonoli. Even sets of nodes on sextic surfaces. Journal of the European Mathematical Society, Tome 9 (2007) no. 4, pp. 705-737. doi : 10.4171/jems/94. http://geodesic.mathdoc.fr/articles/10.4171/jems/94/

Cité par Sources :