Poisson geometry and deformation quantization near a strictly pseudoconvex boundary
Journal of the European Mathematical Society, Tome 9 (2007) no. 4, pp. 681-704.

Voir la notice de l'article provenant de la source EMS Press

Let X be a complex manifold with strongly pseudoconvex boundary M. If ψ is a defining function for M, then −logψ is plurisubharmonic on a neighborhood of M in X, and the (real) 2-form σ=i∂∂ˉ(−logψ) is a symplectic structure on the complement of M in a neighborhood in X of M; it blows up along M.
DOI : 10.4171/jems/93
Classification : 32-XX, 53-XX, 00-XX
Keywords: Poisson structure, pseudoconvexity, plurisubharmonic function, contact structure, Lie algebroid
@article{JEMS_2007_9_4_a2,
     author = {Eric Leichtnam and Xiang Tang and Alan Weinstein},
     title = {Poisson geometry and deformation quantization near a strictly pseudoconvex boundary},
     journal = {Journal of the European Mathematical Society},
     pages = {681--704},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {2007},
     doi = {10.4171/jems/93},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/93/}
}
TY  - JOUR
AU  - Eric Leichtnam
AU  - Xiang Tang
AU  - Alan Weinstein
TI  - Poisson geometry and deformation quantization near a strictly pseudoconvex boundary
JO  - Journal of the European Mathematical Society
PY  - 2007
SP  - 681
EP  - 704
VL  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/93/
DO  - 10.4171/jems/93
ID  - JEMS_2007_9_4_a2
ER  - 
%0 Journal Article
%A Eric Leichtnam
%A Xiang Tang
%A Alan Weinstein
%T Poisson geometry and deformation quantization near a strictly pseudoconvex boundary
%J Journal of the European Mathematical Society
%D 2007
%P 681-704
%V 9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/93/
%R 10.4171/jems/93
%F JEMS_2007_9_4_a2
Eric Leichtnam; Xiang Tang; Alan Weinstein. Poisson geometry and deformation quantization near a strictly pseudoconvex boundary. Journal of the European Mathematical Society, Tome 9 (2007) no. 4, pp. 681-704. doi : 10.4171/jems/93. http://geodesic.mathdoc.fr/articles/10.4171/jems/93/

Cité par Sources :