One cannot hear the winding number
Journal of the European Mathematical Society, Tome 9 (2007) no. 4, pp. 637-658.

Voir la notice de l'article provenant de la source EMS Press

We construct an example of two continuous maps f and g of the circle to itself with the same absolute value of the Fourier transform but with different winding numbers, answering a question of Brezis.
DOI : 10.4171/jems/91
Classification : 42-XX, 55-XX, 00-XX
Keywords: Winding number, Fourier coefficients, Pauli partners, random Fourier series
@article{JEMS_2007_9_4_a0,
     author = {Jean Bourgain and Gady Kozma},
     title = {One cannot hear the winding number},
     journal = {Journal of the European Mathematical Society},
     pages = {637--658},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {2007},
     doi = {10.4171/jems/91},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/91/}
}
TY  - JOUR
AU  - Jean Bourgain
AU  - Gady Kozma
TI  - One cannot hear the winding number
JO  - Journal of the European Mathematical Society
PY  - 2007
SP  - 637
EP  - 658
VL  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/91/
DO  - 10.4171/jems/91
ID  - JEMS_2007_9_4_a0
ER  - 
%0 Journal Article
%A Jean Bourgain
%A Gady Kozma
%T One cannot hear the winding number
%J Journal of the European Mathematical Society
%D 2007
%P 637-658
%V 9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/91/
%R 10.4171/jems/91
%F JEMS_2007_9_4_a0
Jean Bourgain; Gady Kozma. One cannot hear the winding number. Journal of the European Mathematical Society, Tome 9 (2007) no. 4, pp. 637-658. doi : 10.4171/jems/91. http://geodesic.mathdoc.fr/articles/10.4171/jems/91/

Cité par Sources :