Localization for Schrödinger operators with Poisson random potential
Journal of the European Mathematical Society, Tome 9 (2007) no. 3, pp. 577-607.

Voir la notice de l'article provenant de la source EMS Press

We prove exponential and dynamical localization for the Schrödinger operator with a nonnegative Poisson random potential at the bottom of the spectrum in any dimension. We also conclude that the eigenvalues in that spectral region of localization have finite multiplicity. We prove similar localization results in a prescribed energy interval at the bottom of the spectrum provided the density of the Poisson process is large enough.
DOI : 10.4171/jems/89
Classification : 35-XX, 00-XX
@article{JEMS_2007_9_3_a6,
     author = {Fran\c{c}ois Germinet and Peter D. Hislop and Abel Klein},
     title = {Localization for {Schr\"odinger} operators with {Poisson} random potential},
     journal = {Journal of the European Mathematical Society},
     pages = {577--607},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {2007},
     doi = {10.4171/jems/89},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/89/}
}
TY  - JOUR
AU  - François Germinet
AU  - Peter D. Hislop
AU  - Abel Klein
TI  - Localization for Schrödinger operators with Poisson random potential
JO  - Journal of the European Mathematical Society
PY  - 2007
SP  - 577
EP  - 607
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/89/
DO  - 10.4171/jems/89
ID  - JEMS_2007_9_3_a6
ER  - 
%0 Journal Article
%A François Germinet
%A Peter D. Hislop
%A Abel Klein
%T Localization for Schrödinger operators with Poisson random potential
%J Journal of the European Mathematical Society
%D 2007
%P 577-607
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/89/
%R 10.4171/jems/89
%F JEMS_2007_9_3_a6
François Germinet; Peter D. Hislop; Abel Klein. Localization for Schrödinger operators with Poisson random potential. Journal of the European Mathematical Society, Tome 9 (2007) no. 3, pp. 577-607. doi : 10.4171/jems/89. http://geodesic.mathdoc.fr/articles/10.4171/jems/89/

Cité par Sources :