Homogeneity of the spectrum for quasi-periodic Schrödinger operators
Journal of the European Mathematical Society, Tome 20 (2018) no. 12, pp. 3073-3111
Cet article a éte moissonné depuis la source EMS Press
We consider the one-dimensional discrete Schrödinger operator
Classification :
47-XX, 81-XX
Keywords: Quasiperiodic Schrödinger operators, Anderson localization, homogeneous set
Keywords: Quasiperiodic Schrödinger operators, Anderson localization, homogeneous set
@article{JEMS_2018_20_12_a3,
author = {David Damanik and Michael Goldstein and Wilhelm Schlag and Mircea Voda},
title = {Homogeneity of the spectrum for quasi-periodic {Schr\"odinger} operators},
journal = {Journal of the European Mathematical Society},
pages = {3073--3111},
year = {2018},
volume = {20},
number = {12},
doi = {10.4171/jems/829},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/829/}
}
TY - JOUR AU - David Damanik AU - Michael Goldstein AU - Wilhelm Schlag AU - Mircea Voda TI - Homogeneity of the spectrum for quasi-periodic Schrödinger operators JO - Journal of the European Mathematical Society PY - 2018 SP - 3073 EP - 3111 VL - 20 IS - 12 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/829/ DO - 10.4171/jems/829 ID - JEMS_2018_20_12_a3 ER -
%0 Journal Article %A David Damanik %A Michael Goldstein %A Wilhelm Schlag %A Mircea Voda %T Homogeneity of the spectrum for quasi-periodic Schrödinger operators %J Journal of the European Mathematical Society %D 2018 %P 3073-3111 %V 20 %N 12 %U http://geodesic.mathdoc.fr/articles/10.4171/jems/829/ %R 10.4171/jems/829 %F JEMS_2018_20_12_a3
David Damanik; Michael Goldstein; Wilhelm Schlag; Mircea Voda. Homogeneity of the spectrum for quasi-periodic Schrödinger operators. Journal of the European Mathematical Society, Tome 20 (2018) no. 12, pp. 3073-3111. doi: 10.4171/jems/829
Cité par Sources :