Lipschitz stratifications in power-bounded $o$-minimal fields
Journal of the European Mathematical Society, Tome 20 (2018) no. 11, pp. 2717-2767
Cet article a éte moissonné depuis la source EMS Press
We propose to grok Lipschitz stratifications from a non-archimedean point of view and thereby show that they exist for closed definable sets in any power-bounded o-minimal structure on a real closed field. Unlike the previous approaches in the literature, our method bypasses resolution of singularities andWeierstraß preparation altogether; it transfers the situation to a non-archimedean model, where the quantitative estimates appearing in Lipschitz stratifications are sharpened into valuation-theoretic inequalities. Applied to a uniform family of sets, this approach automatically yields a family of stratifications which satisfy the Lipschitz conditions in a uniform way.
Classification :
03-XX, 32-XX, 58-XX
Keywords: Lipschitz stratifications, polynomially bounded fields, power-bounded fields
Keywords: Lipschitz stratifications, polynomially bounded fields, power-bounded fields
@article{JEMS_2018_20_11_a4,
author = {Immanuel Halupczok and Yimu Yin},
title = {Lipschitz stratifications in power-bounded $o$-minimal fields},
journal = {Journal of the European Mathematical Society},
pages = {2717--2767},
year = {2018},
volume = {20},
number = {11},
doi = {10.4171/jems/823},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/823/}
}
TY - JOUR AU - Immanuel Halupczok AU - Yimu Yin TI - Lipschitz stratifications in power-bounded $o$-minimal fields JO - Journal of the European Mathematical Society PY - 2018 SP - 2717 EP - 2767 VL - 20 IS - 11 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/823/ DO - 10.4171/jems/823 ID - JEMS_2018_20_11_a4 ER -
Immanuel Halupczok; Yimu Yin. Lipschitz stratifications in power-bounded $o$-minimal fields. Journal of the European Mathematical Society, Tome 20 (2018) no. 11, pp. 2717-2767. doi: 10.4171/jems/823
Cité par Sources :