Partial zeta values, Gross's tower of fields conjecture, and Gross–Stark units
Journal of the European Mathematical Society, Tome 20 (2018) no. 11, pp. 2643-2683
Cet article a éte moissonné depuis la source EMS Press
We prove a conjecture of Gross regarding the “order of vanishing” of Stickelberger elements relative to an abelian tower of fields and give a cohomological construction of the conjectural Gross–Stark units. This is achieved by introducing an integral version of the Eisenstein cocycle.
Classification :
11-XX
Keywords: Stickelberger elements, Stark’s conjecture, Gross–Stark units, Eisenstein cocycle
Keywords: Stickelberger elements, Stark’s conjecture, Gross–Stark units, Eisenstein cocycle
@article{JEMS_2018_20_11_a2,
author = {Samit Dasgupta and Michael Spie{\ss}},
title = {Partial zeta values, {Gross's} tower of fields conjecture, and {Gross{\textendash}Stark} units},
journal = {Journal of the European Mathematical Society},
pages = {2643--2683},
year = {2018},
volume = {20},
number = {11},
doi = {10.4171/jems/821},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/821/}
}
TY - JOUR AU - Samit Dasgupta AU - Michael Spieß TI - Partial zeta values, Gross's tower of fields conjecture, and Gross–Stark units JO - Journal of the European Mathematical Society PY - 2018 SP - 2643 EP - 2683 VL - 20 IS - 11 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/821/ DO - 10.4171/jems/821 ID - JEMS_2018_20_11_a2 ER -
%0 Journal Article %A Samit Dasgupta %A Michael Spieß %T Partial zeta values, Gross's tower of fields conjecture, and Gross–Stark units %J Journal of the European Mathematical Society %D 2018 %P 2643-2683 %V 20 %N 11 %U http://geodesic.mathdoc.fr/articles/10.4171/jems/821/ %R 10.4171/jems/821 %F JEMS_2018_20_11_a2
Samit Dasgupta; Michael Spieß. Partial zeta values, Gross's tower of fields conjecture, and Gross–Stark units. Journal of the European Mathematical Society, Tome 20 (2018) no. 11, pp. 2643-2683. doi: 10.4171/jems/821
Cité par Sources :