Vanishing theorems for mixed Hodge modules and applications
Journal of the European Mathematical Society, Tome 20 (2018) no. 11, pp. 2589-2606
Cet article a éte moissonné depuis la source EMS Press
We prove two Kawamata–Viehweg type vanishing theorems with coefficients, one for polarisable variations of Hodge structures (PVHSs) and the other for general mixed Hodge modules. They generalise previous vanishing theorems of Kawamata, Viehweg, Esnault and Viehweg, Illusie, Saito, and Popa.
Classification :
14-XX, 11-XX
Keywords: Mixed Hodge modules, vanishing theorems, Shimura varieties
Keywords: Mixed Hodge modules, vanishing theorems, Shimura varieties
@article{JEMS_2018_20_11_a0,
author = {Junecue Suh},
title = {Vanishing theorems for mixed {Hodge} modules and applications},
journal = {Journal of the European Mathematical Society},
pages = {2589--2606},
year = {2018},
volume = {20},
number = {11},
doi = {10.4171/jems/819},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/819/}
}
Junecue Suh. Vanishing theorems for mixed Hodge modules and applications. Journal of the European Mathematical Society, Tome 20 (2018) no. 11, pp. 2589-2606. doi: 10.4171/jems/819
Cité par Sources :