Arithmetic harmonic analysis for smooth quartic Weyl sums: three additive equations
Journal of the European Mathematical Society, Tome 20 (2018) no. 10, pp. 2333-2356
Cet article a éte moissonné depuis la source EMS Press
We establish the non-singular Hasse principle for systems of three diagonal quartic equations in 32 or more variables, subject to a certain rank condition. Our methods employ the arithmetic harmonic analysis of smooth quartic Weyl sums and also a new estimate for their tenth moment.
Classification :
11-XX, 00-XX
Keywords: Quartic Diophantine equations, Hardy–Littlewood method
Keywords: Quartic Diophantine equations, Hardy–Littlewood method
@article{JEMS_2018_20_10_a0,
author = {J\"org Br\"udern and Trevor D. Wooley},
title = {Arithmetic harmonic analysis for smooth quartic {Weyl} sums: three additive equations},
journal = {Journal of the European Mathematical Society},
pages = {2333--2356},
year = {2018},
volume = {20},
number = {10},
doi = {10.4171/jems/813},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/813/}
}
TY - JOUR AU - Jörg Brüdern AU - Trevor D. Wooley TI - Arithmetic harmonic analysis for smooth quartic Weyl sums: three additive equations JO - Journal of the European Mathematical Society PY - 2018 SP - 2333 EP - 2356 VL - 20 IS - 10 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/813/ DO - 10.4171/jems/813 ID - JEMS_2018_20_10_a0 ER -
%0 Journal Article %A Jörg Brüdern %A Trevor D. Wooley %T Arithmetic harmonic analysis for smooth quartic Weyl sums: three additive equations %J Journal of the European Mathematical Society %D 2018 %P 2333-2356 %V 20 %N 10 %U http://geodesic.mathdoc.fr/articles/10.4171/jems/813/ %R 10.4171/jems/813 %F JEMS_2018_20_10_a0
Jörg Brüdern; Trevor D. Wooley. Arithmetic harmonic analysis for smooth quartic Weyl sums: three additive equations. Journal of the European Mathematical Society, Tome 20 (2018) no. 10, pp. 2333-2356. doi: 10.4171/jems/813
Cité par Sources :