Mean curvature flow with surgery of mean convex surfaces in three-manifolds
Journal of the European Mathematical Society, Tome 20 (2018) no. 9, pp. 2239-2257.

Voir la notice de l'article provenant de la source EMS Press

In a previous paper, we introduced a notion of mean curvature flow with surgery for embedded, mean convex surfaces in R3. In this paper, we extend this construction to embedded, mean convex surfaces in a Riemannian three-manifold. Moreover, by combining our results with earlier work of Brian White, we are able to give a precise description of the longtime behavior of the surgically modified flow.
DOI : 10.4171/jems/811
Classification : 53-XX, 58-XX
Keywords: Mean curvature flow, singularities
@article{JEMS_2018_20_9_a5,
     author = {Simon Brendle and Gerhard Huisken},
     title = {Mean curvature flow with surgery of mean convex surfaces in three-manifolds},
     journal = {Journal of the European Mathematical Society},
     pages = {2239--2257},
     publisher = {mathdoc},
     volume = {20},
     number = {9},
     year = {2018},
     doi = {10.4171/jems/811},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/811/}
}
TY  - JOUR
AU  - Simon Brendle
AU  - Gerhard Huisken
TI  - Mean curvature flow with surgery of mean convex surfaces in three-manifolds
JO  - Journal of the European Mathematical Society
PY  - 2018
SP  - 2239
EP  - 2257
VL  - 20
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/811/
DO  - 10.4171/jems/811
ID  - JEMS_2018_20_9_a5
ER  - 
%0 Journal Article
%A Simon Brendle
%A Gerhard Huisken
%T Mean curvature flow with surgery of mean convex surfaces in three-manifolds
%J Journal of the European Mathematical Society
%D 2018
%P 2239-2257
%V 20
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/811/
%R 10.4171/jems/811
%F JEMS_2018_20_9_a5
Simon Brendle; Gerhard Huisken. Mean curvature flow with surgery of mean convex surfaces in three-manifolds. Journal of the European Mathematical Society, Tome 20 (2018) no. 9, pp. 2239-2257. doi : 10.4171/jems/811. http://geodesic.mathdoc.fr/articles/10.4171/jems/811/

Cité par Sources :