Mean curvature flow with surgery of mean convex surfaces in three-manifolds
Journal of the European Mathematical Society, Tome 20 (2018) no. 9, pp. 2239-2257
Voir la notice de l'article provenant de la source EMS Press
In a previous paper, we introduced a notion of mean curvature flow with surgery for embedded, mean convex surfaces in R3. In this paper, we extend this construction to embedded, mean convex surfaces in a Riemannian three-manifold. Moreover, by combining our results with earlier work of Brian White, we are able to give a precise description of the longtime behavior of the surgically modified flow.
@article{JEMS_2018_20_9_a5,
author = {Simon Brendle and Gerhard Huisken},
title = {Mean curvature flow with surgery of mean convex surfaces in three-manifolds},
journal = {Journal of the European Mathematical Society},
pages = {2239--2257},
publisher = {mathdoc},
volume = {20},
number = {9},
year = {2018},
doi = {10.4171/jems/811},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/811/}
}
TY - JOUR AU - Simon Brendle AU - Gerhard Huisken TI - Mean curvature flow with surgery of mean convex surfaces in three-manifolds JO - Journal of the European Mathematical Society PY - 2018 SP - 2239 EP - 2257 VL - 20 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/811/ DO - 10.4171/jems/811 ID - JEMS_2018_20_9_a5 ER -
%0 Journal Article %A Simon Brendle %A Gerhard Huisken %T Mean curvature flow with surgery of mean convex surfaces in three-manifolds %J Journal of the European Mathematical Society %D 2018 %P 2239-2257 %V 20 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4171/jems/811/ %R 10.4171/jems/811 %F JEMS_2018_20_9_a5
Simon Brendle; Gerhard Huisken. Mean curvature flow with surgery of mean convex surfaces in three-manifolds. Journal of the European Mathematical Society, Tome 20 (2018) no. 9, pp. 2239-2257. doi: 10.4171/jems/811
Cité par Sources :