Combinatorial positivity of translation-invariant valuations and a discrete Hadwiger theorem
Journal of the European Mathematical Society, Tome 20 (2018) no. 9, pp. 2181-2208
Voir la notice de l'article provenant de la source EMS Press
We introduce the notion of combinatorial positivity of translation-invariant valuations on convex polytopes that extends the nonnegativity of Ehrhart h∗-vectors. We give a surprisingly simple characterization of combinatorially positive valuations that implies Stanley’s nonnegativity and monotonicity of h∗-vectors and generalizes work of Beck et al. (2010) from solid-angle polynomials to all translation-invariant simple valuations. For general polytopes, this yields a new characterization of the volume as the unique combinatorially positive valuation up to scaling. For lattice polytopes our results extend work of Betke–Kneser (1985) and give a discrete Hadwiger theorem: There is essentially a unique combinatorially-positive basis for the space of lattice-invariant valuations. As byproducts, we prove a multivariate Ehrhart–Macdonald reciprocity and we show universality of weight valuations studied in Beck et al. (2010).
Classification :
52-XX, 05-XX
Keywords: Ehrhart polynomials, h∗-vectors, combinatorial positivity, translation-invariant valuations, discrete Hadwiger theorem, multivariate reciprocity
Keywords: Ehrhart polynomials, h∗-vectors, combinatorial positivity, translation-invariant valuations, discrete Hadwiger theorem, multivariate reciprocity
@article{JEMS_2018_20_9_a3,
author = {Katharina Jochemko and Raman Sanyal},
title = {Combinatorial positivity of translation-invariant valuations and a discrete {Hadwiger} theorem},
journal = {Journal of the European Mathematical Society},
pages = {2181--2208},
publisher = {mathdoc},
volume = {20},
number = {9},
year = {2018},
doi = {10.4171/jems/809},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/809/}
}
TY - JOUR AU - Katharina Jochemko AU - Raman Sanyal TI - Combinatorial positivity of translation-invariant valuations and a discrete Hadwiger theorem JO - Journal of the European Mathematical Society PY - 2018 SP - 2181 EP - 2208 VL - 20 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/809/ DO - 10.4171/jems/809 ID - JEMS_2018_20_9_a3 ER -
%0 Journal Article %A Katharina Jochemko %A Raman Sanyal %T Combinatorial positivity of translation-invariant valuations and a discrete Hadwiger theorem %J Journal of the European Mathematical Society %D 2018 %P 2181-2208 %V 20 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4171/jems/809/ %R 10.4171/jems/809 %F JEMS_2018_20_9_a3
Katharina Jochemko; Raman Sanyal. Combinatorial positivity of translation-invariant valuations and a discrete Hadwiger theorem. Journal of the European Mathematical Society, Tome 20 (2018) no. 9, pp. 2181-2208. doi: 10.4171/jems/809
Cité par Sources :