Bounded variation approximation of $L_p$ dyadic martingales and solutions to elliptic equations
Journal of the European Mathematical Society, Tome 20 (2018) no. 8, pp. 1819-1850.

Voir la notice de l'article provenant de la source EMS Press

We prove continuity and surjectivity of the trace map onto Lp​(Rn), from a space of functions of locally bounded variation, defined by the Carleson functional. The extension map is constructed through a stopping time argument. This extends earlier work by Varopoulos in the BMO case, related to the Corona Theorem. We also prove Lp​ Carleson approximability results for solutions to elliptic non-smooth divergence form equations, which generalize results in the case p=∞ by Hofmann, Kenig, Mayboroda and Pipher.
DOI : 10.4171/jems/800
Classification : 42-XX, 35-XX
Keywords: Extension map, Carleson functional, approximability, stopping time argument, Corona Theorem, elliptic equation, bounded variation
@article{JEMS_2018_20_8_a0,
     author = {Tuomas Hyt\"onen and Andreas Ros\'en},
     title = {Bounded variation approximation of $L_p$ dyadic martingales and solutions to elliptic equations},
     journal = {Journal of the European Mathematical Society},
     pages = {1819--1850},
     publisher = {mathdoc},
     volume = {20},
     number = {8},
     year = {2018},
     doi = {10.4171/jems/800},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/800/}
}
TY  - JOUR
AU  - Tuomas Hytönen
AU  - Andreas Rosén
TI  - Bounded variation approximation of $L_p$ dyadic martingales and solutions to elliptic equations
JO  - Journal of the European Mathematical Society
PY  - 2018
SP  - 1819
EP  - 1850
VL  - 20
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/800/
DO  - 10.4171/jems/800
ID  - JEMS_2018_20_8_a0
ER  - 
%0 Journal Article
%A Tuomas Hytönen
%A Andreas Rosén
%T Bounded variation approximation of $L_p$ dyadic martingales and solutions to elliptic equations
%J Journal of the European Mathematical Society
%D 2018
%P 1819-1850
%V 20
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/800/
%R 10.4171/jems/800
%F JEMS_2018_20_8_a0
Tuomas Hytönen; Andreas Rosén. Bounded variation approximation of $L_p$ dyadic martingales and solutions to elliptic equations. Journal of the European Mathematical Society, Tome 20 (2018) no. 8, pp. 1819-1850. doi : 10.4171/jems/800. http://geodesic.mathdoc.fr/articles/10.4171/jems/800/

Cité par Sources :