Bounded variation approximation of $L_p$ dyadic martingales and solutions to elliptic equations
Journal of the European Mathematical Society, Tome 20 (2018) no. 8, pp. 1819-1850
Voir la notice de l'article provenant de la source EMS Press
We prove continuity and surjectivity of the trace map onto Lp(Rn), from a space of functions of locally bounded variation, defined by the Carleson functional. The extension map is constructed through a stopping time argument. This extends earlier work by Varopoulos in the BMO case, related to the Corona Theorem. We also prove Lp Carleson approximability results for solutions to elliptic non-smooth divergence form equations, which generalize results in the case p=∞ by Hofmann, Kenig, Mayboroda and Pipher.
Classification :
42-XX, 35-XX
Keywords: Extension map, Carleson functional, approximability, stopping time argument, Corona Theorem, elliptic equation, bounded variation
Keywords: Extension map, Carleson functional, approximability, stopping time argument, Corona Theorem, elliptic equation, bounded variation
@article{JEMS_2018_20_8_a0,
author = {Tuomas Hyt\"onen and Andreas Ros\'en},
title = {Bounded variation approximation of $L_p$ dyadic martingales and solutions to elliptic equations},
journal = {Journal of the European Mathematical Society},
pages = {1819--1850},
publisher = {mathdoc},
volume = {20},
number = {8},
year = {2018},
doi = {10.4171/jems/800},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/800/}
}
TY - JOUR AU - Tuomas Hytönen AU - Andreas Rosén TI - Bounded variation approximation of $L_p$ dyadic martingales and solutions to elliptic equations JO - Journal of the European Mathematical Society PY - 2018 SP - 1819 EP - 1850 VL - 20 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/800/ DO - 10.4171/jems/800 ID - JEMS_2018_20_8_a0 ER -
%0 Journal Article %A Tuomas Hytönen %A Andreas Rosén %T Bounded variation approximation of $L_p$ dyadic martingales and solutions to elliptic equations %J Journal of the European Mathematical Society %D 2018 %P 1819-1850 %V 20 %N 8 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4171/jems/800/ %R 10.4171/jems/800 %F JEMS_2018_20_8_a0
Tuomas Hytönen; Andreas Rosén. Bounded variation approximation of $L_p$ dyadic martingales and solutions to elliptic equations. Journal of the European Mathematical Society, Tome 20 (2018) no. 8, pp. 1819-1850. doi: 10.4171/jems/800
Cité par Sources :