New estimates for elliptic equations and Hodge type systems
Journal of the European Mathematical Society, Tome 9 (2007) no. 2, pp. 277-315
Voir la notice de l'article provenant de la source EMS Press
We establish new estimates for the Laplacian, the div-curl system, and more general Hodge systems in arbitrary dimension n, with data in L1. We also present related results concerning differential forms with coefficients in the limiting Sobolev space W1,n.
Classification :
35-XX, 42-XX, 46-XX, 58-XX
Keywords: Elliptic systems, data in L1, div-curl, Hodge systems, limiting Sobolev spaces, differential forms, Littlewood–Paley decomposition, Ginzburg–Landau functional
Keywords: Elliptic systems, data in L1, div-curl, Hodge systems, limiting Sobolev spaces, differential forms, Littlewood–Paley decomposition, Ginzburg–Landau functional
@article{JEMS_2007_9_2_a3,
author = {Jean Bourgain and Ha{\"\i}m Brezis},
title = {New estimates for elliptic equations and {Hodge} type systems},
journal = {Journal of the European Mathematical Society},
pages = {277--315},
publisher = {mathdoc},
volume = {9},
number = {2},
year = {2007},
doi = {10.4171/jems/80},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/80/}
}
TY - JOUR AU - Jean Bourgain AU - Haïm Brezis TI - New estimates for elliptic equations and Hodge type systems JO - Journal of the European Mathematical Society PY - 2007 SP - 277 EP - 315 VL - 9 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/80/ DO - 10.4171/jems/80 ID - JEMS_2007_9_2_a3 ER -
Jean Bourgain; Haïm Brezis. New estimates for elliptic equations and Hodge type systems. Journal of the European Mathematical Society, Tome 9 (2007) no. 2, pp. 277-315. doi: 10.4171/jems/80
Cité par Sources :