Triangulated surfaces in triangulated categories
Journal of the European Mathematical Society, Tome 20 (2018) no. 6, pp. 1473-1524
Cet article a éte moissonné depuis la source EMS Press
For a triangulated category A with a 2-periodic dg-enhancement and a triangulated oriented marked surface S, we introduce a dg-category F(S,A) parametrizing systems of exact triangles in A labelled by triangles of S. Our main result is that F(S,A) is independent of the choice of a triangulation of S up to essentially unique Morita equivalence. In particular, it admits a canonical action of the mapping class group. The proof is based on general properties of cyclic 2-Segal spaces.
Classification :
18-XX, 14-XX
Keywords: Triangulated categories, ribbon graphs, topological Fukaya categories, mapping class groups
Keywords: Triangulated categories, ribbon graphs, topological Fukaya categories, mapping class groups
@article{JEMS_2018_20_6_a3,
author = {Tobias Dyckerhoff and Mikhail Kapranov},
title = {Triangulated surfaces in triangulated categories},
journal = {Journal of the European Mathematical Society},
pages = {1473--1524},
year = {2018},
volume = {20},
number = {6},
doi = {10.4171/jems/791},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/791/}
}
TY - JOUR AU - Tobias Dyckerhoff AU - Mikhail Kapranov TI - Triangulated surfaces in triangulated categories JO - Journal of the European Mathematical Society PY - 2018 SP - 1473 EP - 1524 VL - 20 IS - 6 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/791/ DO - 10.4171/jems/791 ID - JEMS_2018_20_6_a3 ER -
Tobias Dyckerhoff; Mikhail Kapranov. Triangulated surfaces in triangulated categories. Journal of the European Mathematical Society, Tome 20 (2018) no. 6, pp. 1473-1524. doi: 10.4171/jems/791
Cité par Sources :