Vectorial nonlinear potential theory
Journal of the European Mathematical Society, Tome 20 (2018) no. 4, pp. 929-1004
Voir la notice de l'article provenant de la source EMS Press
We settle the longstanding problem of establishing pointwise potential estimates for vectorial solutions u:Ω→RN to the non-homogeneous p-Laplacean system
Classification :
35-XX
Keywords: Nonlinear potential theory, regularity, degenerate elliptic systems, measure data
Keywords: Nonlinear potential theory, regularity, degenerate elliptic systems, measure data
@article{JEMS_2018_20_4_a3,
author = {Tuomo Kuusi and Giuseppe Mingione},
title = {Vectorial nonlinear potential theory},
journal = {Journal of the European Mathematical Society},
pages = {929--1004},
publisher = {mathdoc},
volume = {20},
number = {4},
year = {2018},
doi = {10.4171/jems/780},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/780/}
}
TY - JOUR AU - Tuomo Kuusi AU - Giuseppe Mingione TI - Vectorial nonlinear potential theory JO - Journal of the European Mathematical Society PY - 2018 SP - 929 EP - 1004 VL - 20 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/780/ DO - 10.4171/jems/780 ID - JEMS_2018_20_4_a3 ER -
Tuomo Kuusi; Giuseppe Mingione. Vectorial nonlinear potential theory. Journal of the European Mathematical Society, Tome 20 (2018) no. 4, pp. 929-1004. doi: 10.4171/jems/780
Cité par Sources :