Boundedness of moduli of varieties of general type
Journal of the European Mathematical Society, Tome 20 (2018) no. 4, pp. 865-901
Voir la notice de l'article provenant de la source EMS Press
We show that the family of semi log canonical pairs with ample log canonical class and with fixed volume is bounded.
Classification :
14-XX
Keywords: Moduli, boundedness, general type, minimal model program, abundance
Keywords: Moduli, boundedness, general type, minimal model program, abundance
@article{JEMS_2018_20_4_a1,
author = {Christopher D. Hacon and James McKernan and Chenyang Xu},
title = {Boundedness of moduli of varieties of general type},
journal = {Journal of the European Mathematical Society},
pages = {865--901},
publisher = {mathdoc},
volume = {20},
number = {4},
year = {2018},
doi = {10.4171/jems/778},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/778/}
}
TY - JOUR AU - Christopher D. Hacon AU - James McKernan AU - Chenyang Xu TI - Boundedness of moduli of varieties of general type JO - Journal of the European Mathematical Society PY - 2018 SP - 865 EP - 901 VL - 20 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/778/ DO - 10.4171/jems/778 ID - JEMS_2018_20_4_a1 ER -
%0 Journal Article %A Christopher D. Hacon %A James McKernan %A Chenyang Xu %T Boundedness of moduli of varieties of general type %J Journal of the European Mathematical Society %D 2018 %P 865-901 %V 20 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4171/jems/778/ %R 10.4171/jems/778 %F JEMS_2018_20_4_a1
Christopher D. Hacon; James McKernan; Chenyang Xu. Boundedness of moduli of varieties of general type. Journal of the European Mathematical Society, Tome 20 (2018) no. 4, pp. 865-901. doi: 10.4171/jems/778
Cité par Sources :