Boundedness of moduli of varieties of general type
Journal of the European Mathematical Society, Tome 20 (2018) no. 4, pp. 865-901
Cet article a éte moissonné depuis la source EMS Press
We show that the family of semi log canonical pairs with ample log canonical class and with fixed volume is bounded.
Classification :
14-XX
Keywords: Moduli, boundedness, general type, minimal model program, abundance
Keywords: Moduli, boundedness, general type, minimal model program, abundance
@article{JEMS_2018_20_4_a1,
author = {Christopher D. Hacon and James McKernan and Chenyang Xu},
title = {Boundedness of moduli of varieties of general type},
journal = {Journal of the European Mathematical Society},
pages = {865--901},
year = {2018},
volume = {20},
number = {4},
doi = {10.4171/jems/778},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/778/}
}
TY - JOUR AU - Christopher D. Hacon AU - James McKernan AU - Chenyang Xu TI - Boundedness of moduli of varieties of general type JO - Journal of the European Mathematical Society PY - 2018 SP - 865 EP - 901 VL - 20 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/778/ DO - 10.4171/jems/778 ID - JEMS_2018_20_4_a1 ER -
%0 Journal Article %A Christopher D. Hacon %A James McKernan %A Chenyang Xu %T Boundedness of moduli of varieties of general type %J Journal of the European Mathematical Society %D 2018 %P 865-901 %V 20 %N 4 %U http://geodesic.mathdoc.fr/articles/10.4171/jems/778/ %R 10.4171/jems/778 %F JEMS_2018_20_4_a1
Christopher D. Hacon; James McKernan; Chenyang Xu. Boundedness of moduli of varieties of general type. Journal of the European Mathematical Society, Tome 20 (2018) no. 4, pp. 865-901. doi: 10.4171/jems/778
Cité par Sources :