Surreal numbers, derivations and transseries
Journal of the European Mathematical Society, Tome 20 (2018) no. 2, pp. 339-390
Cet article a éte moissonné depuis la source EMS Press
Several authors have conjectured that Conway’s field of surreal numbers, equipped with the exponential function of Kruskal and Gonshor, can be described as a field of transseries and admits a compatible differential structure of Hardy type. In this paper we give a complete positive solution to both problems. We also show that with this new differential structure, the surreal numbers are Liouville closed, that is, the derivation is surjective.
Classification :
03-XX, 13-XX, 16-XX, 26-XX
Keywords: Surreal numbers, transseries, Hardy fields, differential fields
Keywords: Surreal numbers, transseries, Hardy fields, differential fields
@article{JEMS_2018_20_2_a3,
author = {Alessandro Berarducci and Vincenzo Mantova},
title = {Surreal numbers, derivations and transseries},
journal = {Journal of the European Mathematical Society},
pages = {339--390},
year = {2018},
volume = {20},
number = {2},
doi = {10.4171/jems/769},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/769/}
}
TY - JOUR AU - Alessandro Berarducci AU - Vincenzo Mantova TI - Surreal numbers, derivations and transseries JO - Journal of the European Mathematical Society PY - 2018 SP - 339 EP - 390 VL - 20 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/769/ DO - 10.4171/jems/769 ID - JEMS_2018_20_2_a3 ER -
Alessandro Berarducci; Vincenzo Mantova. Surreal numbers, derivations and transseries. Journal of the European Mathematical Society, Tome 20 (2018) no. 2, pp. 339-390. doi: 10.4171/jems/769
Cité par Sources :