Surreal numbers, derivations and transseries
Journal of the European Mathematical Society, Tome 20 (2018) no. 2, pp. 339-390
Voir la notice de l'article provenant de la source EMS Press
Several authors have conjectured that Conway’s field of surreal numbers, equipped with the exponential function of Kruskal and Gonshor, can be described as a field of transseries and admits a compatible differential structure of Hardy type. In this paper we give a complete positive solution to both problems. We also show that with this new differential structure, the surreal numbers are Liouville closed, that is, the derivation is surjective.
Classification :
03-XX, 13-XX, 16-XX, 26-XX
Keywords: Surreal numbers, transseries, Hardy fields, differential fields
Keywords: Surreal numbers, transseries, Hardy fields, differential fields
@article{JEMS_2018_20_2_a3,
author = {Alessandro Berarducci and Vincenzo Mantova},
title = {Surreal numbers, derivations and transseries},
journal = {Journal of the European Mathematical Society},
pages = {339--390},
publisher = {mathdoc},
volume = {20},
number = {2},
year = {2018},
doi = {10.4171/jems/769},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/769/}
}
TY - JOUR AU - Alessandro Berarducci AU - Vincenzo Mantova TI - Surreal numbers, derivations and transseries JO - Journal of the European Mathematical Society PY - 2018 SP - 339 EP - 390 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/769/ DO - 10.4171/jems/769 ID - JEMS_2018_20_2_a3 ER -
Alessandro Berarducci; Vincenzo Mantova. Surreal numbers, derivations and transseries. Journal of the European Mathematical Society, Tome 20 (2018) no. 2, pp. 339-390. doi: 10.4171/jems/769
Cité par Sources :