Rigid inner forms vs isocrystals
Journal of the European Mathematical Society, Tome 20 (2018) no. 1, pp. 61-101
Cet article a éte moissonné depuis la source EMS Press
We compare two statements of the refined local Langlands correspondence for connected reductive groups defined over a p-adic field: one involving Kottwitz’s set B(G) of isocrystals with additional structure, and one involving the cohomology set H1(u→W,Z→G) of [Kal16b]. We show that if either statement is valid for all connected reductive groups, then so is the other. We also discuss how the second statement depends on the choice of an element of H1(u→W,Z→G).
Classification :
11-XX, 22-XX
Keywords: Endoscopy, local Langlands correspondence, isocrystals, rigid inner forms
Keywords: Endoscopy, local Langlands correspondence, isocrystals, rigid inner forms
@article{JEMS_2018_20_1_a2,
author = {Tasho Kaletha},
title = {Rigid inner forms vs isocrystals},
journal = {Journal of the European Mathematical Society},
pages = {61--101},
year = {2018},
volume = {20},
number = {1},
doi = {10.4171/jems/759},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/759/}
}
Tasho Kaletha. Rigid inner forms vs isocrystals. Journal of the European Mathematical Society, Tome 20 (2018) no. 1, pp. 61-101. doi: 10.4171/jems/759
Cité par Sources :