Rigid inner forms vs isocrystals
Journal of the European Mathematical Society, Tome 20 (2018) no. 1, pp. 61-101.

Voir la notice de l'article provenant de la source EMS Press

We compare two statements of the refined local Langlands correspondence for connected reductive groups defined over a p-adic field: one involving Kottwitz’s set B(G) of isocrystals with additional structure, and one involving the cohomology set H1(u→W,Z→G) of [Kal16b]. We show that if either statement is valid for all connected reductive groups, then so is the other. We also discuss how the second statement depends on the choice of an element of H1(u→W,Z→G).
DOI : 10.4171/jems/759
Classification : 11-XX, 22-XX
Keywords: Endoscopy, local Langlands correspondence, isocrystals, rigid inner forms
@article{JEMS_2018_20_1_a2,
     author = {Tasho Kaletha},
     title = {Rigid inner forms vs isocrystals},
     journal = {Journal of the European Mathematical Society},
     pages = {61--101},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2018},
     doi = {10.4171/jems/759},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/759/}
}
TY  - JOUR
AU  - Tasho Kaletha
TI  - Rigid inner forms vs isocrystals
JO  - Journal of the European Mathematical Society
PY  - 2018
SP  - 61
EP  - 101
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/759/
DO  - 10.4171/jems/759
ID  - JEMS_2018_20_1_a2
ER  - 
%0 Journal Article
%A Tasho Kaletha
%T Rigid inner forms vs isocrystals
%J Journal of the European Mathematical Society
%D 2018
%P 61-101
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/759/
%R 10.4171/jems/759
%F JEMS_2018_20_1_a2
Tasho Kaletha. Rigid inner forms vs isocrystals. Journal of the European Mathematical Society, Tome 20 (2018) no. 1, pp. 61-101. doi : 10.4171/jems/759. http://geodesic.mathdoc.fr/articles/10.4171/jems/759/

Cité par Sources :