Face numbers of sequentially Cohen–Macaulay complexes and Betti numbers of componentwise linear ideals
Journal of the European Mathematical Society, Tome 19 (2017) no. 12, pp. 3851-3865
Voir la notice de l'article provenant de la source EMS Press
A numerical characterization is given of the h-triangles of sequentially Cohen–Macaulay simplicial complexes. This result determines the number of faces of various dimensions and codimensions that are possible in such a complex, generalizing the classical Macaulay–Stanley theorem to the nonpure case. Moreover, we characterize the possible Betti tables of componentwise linear ideals. A key tool in our investigation is a bijection between shifted multicomplexes of degree ≤d and shifted pure (d–1)-dimensional simplicial complexes
Classification :
05-XX, 13-XX
Keywords: Simplicial complex, face numbers, Stanley–Reisner rings, sequential Cohen–Macaulayness, componentwise linear ideals
Keywords: Simplicial complex, face numbers, Stanley–Reisner rings, sequential Cohen–Macaulayness, componentwise linear ideals
@article{JEMS_2017_19_12_a8,
author = {Karim A. Adiprasito and Anders Bj\"orner and Afshin Goodarzi},
title = {Face numbers of sequentially {Cohen{\textendash}Macaulay} complexes and {Betti} numbers of componentwise linear ideals},
journal = {Journal of the European Mathematical Society},
pages = {3851--3865},
publisher = {mathdoc},
volume = {19},
number = {12},
year = {2017},
doi = {10.4171/jems/755},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/755/}
}
TY - JOUR AU - Karim A. Adiprasito AU - Anders Björner AU - Afshin Goodarzi TI - Face numbers of sequentially Cohen–Macaulay complexes and Betti numbers of componentwise linear ideals JO - Journal of the European Mathematical Society PY - 2017 SP - 3851 EP - 3865 VL - 19 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/755/ DO - 10.4171/jems/755 ID - JEMS_2017_19_12_a8 ER -
%0 Journal Article %A Karim A. Adiprasito %A Anders Björner %A Afshin Goodarzi %T Face numbers of sequentially Cohen–Macaulay complexes and Betti numbers of componentwise linear ideals %J Journal of the European Mathematical Society %D 2017 %P 3851-3865 %V 19 %N 12 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4171/jems/755/ %R 10.4171/jems/755 %F JEMS_2017_19_12_a8
Karim A. Adiprasito; Anders Björner; Afshin Goodarzi. Face numbers of sequentially Cohen–Macaulay complexes and Betti numbers of componentwise linear ideals. Journal of the European Mathematical Society, Tome 19 (2017) no. 12, pp. 3851-3865. doi: 10.4171/jems/755
Cité par Sources :