The motivic Steenrod algebra in positive characteristic
Journal of the European Mathematical Society, Tome 19 (2017) no. 12, pp. 3813-3849.

Voir la notice de l'article provenant de la source EMS Press

Let S be an essentially smooth scheme over a field and l=charS a prime number. We show that the algebra of bistable operations in the mod l motivic cohomology of smooth S-schemes is generated by the motivic Steenrod operations. This was previously proved by Voevodsky for S a field of characteristic zero. We follow Voevodsky's proof but remove its dependence on characteristic zero by using etale cohomology instead of topological realization and by replacing resolution of singularities with a theorem of Gabber on alterations.
DOI : 10.4171/jems/754
Classification : 14-XX, 19-XX
Keywords: The motivic Steenrod algebra and its dual
@article{JEMS_2017_19_12_a7,
     author = {Marc Hoyois and Shane Kelly and Paul Arne {\O}stv{\ae}r},
     title = {The motivic {Steenrod} algebra in positive characteristic},
     journal = {Journal of the European Mathematical Society},
     pages = {3813--3849},
     publisher = {mathdoc},
     volume = {19},
     number = {12},
     year = {2017},
     doi = {10.4171/jems/754},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/754/}
}
TY  - JOUR
AU  - Marc Hoyois
AU  - Shane Kelly
AU  - Paul Arne Østvær
TI  - The motivic Steenrod algebra in positive characteristic
JO  - Journal of the European Mathematical Society
PY  - 2017
SP  - 3813
EP  - 3849
VL  - 19
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/754/
DO  - 10.4171/jems/754
ID  - JEMS_2017_19_12_a7
ER  - 
%0 Journal Article
%A Marc Hoyois
%A Shane Kelly
%A Paul Arne Østvær
%T The motivic Steenrod algebra in positive characteristic
%J Journal of the European Mathematical Society
%D 2017
%P 3813-3849
%V 19
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/754/
%R 10.4171/jems/754
%F JEMS_2017_19_12_a7
Marc Hoyois; Shane Kelly; Paul Arne Østvær. The motivic Steenrod algebra in positive characteristic. Journal of the European Mathematical Society, Tome 19 (2017) no. 12, pp. 3813-3849. doi : 10.4171/jems/754. http://geodesic.mathdoc.fr/articles/10.4171/jems/754/

Cité par Sources :