Entropy and a convergence theorem for Gauss curvature flow in high dimension
Journal of the European Mathematical Society, Tome 19 (2017) no. 12, pp. 3735-3761
Voir la notice de l'article provenant de la source EMS Press
We prove uniform regularity estimates for the normalized Gauss curvature flow in higher dimensions. The convergence of solutions in C∞-topology to a smooth strictly convex soliton as t goes to infinity is obtained as a consequence of these estimates together with an earlier result of Andrews. The estimates are established via the study of an entropy functional for convex bodies.
Classification :
35-XX, 53-XX, 58-XX
Keywords: Gauss curvature flow, entropy, support functions, regularity, convergence
Keywords: Gauss curvature flow, entropy, support functions, regularity, convergence
@article{JEMS_2017_19_12_a5,
author = {Pengfei Guan and Lei Ni},
title = {Entropy and a convergence theorem for {Gauss} curvature flow in high dimension},
journal = {Journal of the European Mathematical Society},
pages = {3735--3761},
publisher = {mathdoc},
volume = {19},
number = {12},
year = {2017},
doi = {10.4171/jems/752},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/752/}
}
TY - JOUR AU - Pengfei Guan AU - Lei Ni TI - Entropy and a convergence theorem for Gauss curvature flow in high dimension JO - Journal of the European Mathematical Society PY - 2017 SP - 3735 EP - 3761 VL - 19 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/752/ DO - 10.4171/jems/752 ID - JEMS_2017_19_12_a5 ER -
%0 Journal Article %A Pengfei Guan %A Lei Ni %T Entropy and a convergence theorem for Gauss curvature flow in high dimension %J Journal of the European Mathematical Society %D 2017 %P 3735-3761 %V 19 %N 12 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4171/jems/752/ %R 10.4171/jems/752 %F JEMS_2017_19_12_a5
Pengfei Guan; Lei Ni. Entropy and a convergence theorem for Gauss curvature flow in high dimension. Journal of the European Mathematical Society, Tome 19 (2017) no. 12, pp. 3735-3761. doi: 10.4171/jems/752
Cité par Sources :