Entropy and a convergence theorem for Gauss curvature flow in high dimension
Journal of the European Mathematical Society, Tome 19 (2017) no. 12, pp. 3735-3761
Cet article a éte moissonné depuis la source EMS Press
We prove uniform regularity estimates for the normalized Gauss curvature flow in higher dimensions. The convergence of solutions in C∞-topology to a smooth strictly convex soliton as t goes to infinity is obtained as a consequence of these estimates together with an earlier result of Andrews. The estimates are established via the study of an entropy functional for convex bodies.
Classification :
35-XX, 53-XX, 58-XX
Keywords: Gauss curvature flow, entropy, support functions, regularity, convergence
Keywords: Gauss curvature flow, entropy, support functions, regularity, convergence
@article{JEMS_2017_19_12_a5,
author = {Pengfei Guan and Lei Ni},
title = {Entropy and a convergence theorem for {Gauss} curvature flow in high dimension},
journal = {Journal of the European Mathematical Society},
pages = {3735--3761},
year = {2017},
volume = {19},
number = {12},
doi = {10.4171/jems/752},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/752/}
}
TY - JOUR AU - Pengfei Guan AU - Lei Ni TI - Entropy and a convergence theorem for Gauss curvature flow in high dimension JO - Journal of the European Mathematical Society PY - 2017 SP - 3735 EP - 3761 VL - 19 IS - 12 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/752/ DO - 10.4171/jems/752 ID - JEMS_2017_19_12_a5 ER -
%0 Journal Article %A Pengfei Guan %A Lei Ni %T Entropy and a convergence theorem for Gauss curvature flow in high dimension %J Journal of the European Mathematical Society %D 2017 %P 3735-3761 %V 19 %N 12 %U http://geodesic.mathdoc.fr/articles/10.4171/jems/752/ %R 10.4171/jems/752 %F JEMS_2017_19_12_a5
Pengfei Guan; Lei Ni. Entropy and a convergence theorem for Gauss curvature flow in high dimension. Journal of the European Mathematical Society, Tome 19 (2017) no. 12, pp. 3735-3761. doi: 10.4171/jems/752
Cité par Sources :