Entropy and a convergence theorem for Gauss curvature flow in high dimension
Journal of the European Mathematical Society, Tome 19 (2017) no. 12, pp. 3735-3761.

Voir la notice de l'article provenant de la source EMS Press

We prove uniform regularity estimates for the normalized Gauss curvature flow in higher dimensions. The convergence of solutions in C∞-topology to a smooth strictly convex soliton as t goes to infinity is obtained as a consequence of these estimates together with an earlier result of Andrews. The estimates are established via the study of an entropy functional for convex bodies.
DOI : 10.4171/jems/752
Classification : 35-XX, 53-XX, 58-XX
Keywords: Gauss curvature flow, entropy, support functions, regularity, convergence
@article{JEMS_2017_19_12_a5,
     author = {Pengfei Guan and Lei Ni},
     title = {Entropy and a convergence theorem for {Gauss} curvature flow in high dimension},
     journal = {Journal of the European Mathematical Society},
     pages = {3735--3761},
     publisher = {mathdoc},
     volume = {19},
     number = {12},
     year = {2017},
     doi = {10.4171/jems/752},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/752/}
}
TY  - JOUR
AU  - Pengfei Guan
AU  - Lei Ni
TI  - Entropy and a convergence theorem for Gauss curvature flow in high dimension
JO  - Journal of the European Mathematical Society
PY  - 2017
SP  - 3735
EP  - 3761
VL  - 19
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/752/
DO  - 10.4171/jems/752
ID  - JEMS_2017_19_12_a5
ER  - 
%0 Journal Article
%A Pengfei Guan
%A Lei Ni
%T Entropy and a convergence theorem for Gauss curvature flow in high dimension
%J Journal of the European Mathematical Society
%D 2017
%P 3735-3761
%V 19
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/752/
%R 10.4171/jems/752
%F JEMS_2017_19_12_a5
Pengfei Guan; Lei Ni. Entropy and a convergence theorem for Gauss curvature flow in high dimension. Journal of the European Mathematical Society, Tome 19 (2017) no. 12, pp. 3735-3761. doi : 10.4171/jems/752. http://geodesic.mathdoc.fr/articles/10.4171/jems/752/

Cité par Sources :