Mean quantum percolation
Journal of the European Mathematical Society, Tome 19 (2017) no. 12, pp. 3679-3707
Cet article a éte moissonné depuis la source EMS Press
We study the spectrum of adjacency matrices of random graphs. We develop two techniques to lower bound the mass of the continuous part of the spectral measure or the density of states. As an application, we prove that the spectral measure of bond percolation in the two-dimensional lattice contains a non-trivial continuous part in the supercritical regime. The same result holds for the limiting spectral measure of a supercritical Erdős–Rényi graph and for the spectral measure of a unimodular random tree with at least two ends. We give examples of random graphs with purely continuous spectrum.
Classification :
60-XX
Keywords: Expected spectral measure, continuous spectra, sparse random graphs, supercritical percolation, unimodular tree, Erdős–Rényi graph
Keywords: Expected spectral measure, continuous spectra, sparse random graphs, supercritical percolation, unimodular tree, Erdős–Rényi graph
@article{JEMS_2017_19_12_a3,
author = {Charles Bordenave and Arnab Sen and B\'alint Vir\'ag},
title = {Mean quantum percolation},
journal = {Journal of the European Mathematical Society},
pages = {3679--3707},
year = {2017},
volume = {19},
number = {12},
doi = {10.4171/jems/750},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/750/}
}
TY - JOUR AU - Charles Bordenave AU - Arnab Sen AU - Bálint Virág TI - Mean quantum percolation JO - Journal of the European Mathematical Society PY - 2017 SP - 3679 EP - 3707 VL - 19 IS - 12 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/750/ DO - 10.4171/jems/750 ID - JEMS_2017_19_12_a3 ER -
Charles Bordenave; Arnab Sen; Bálint Virág. Mean quantum percolation. Journal of the European Mathematical Society, Tome 19 (2017) no. 12, pp. 3679-3707. doi: 10.4171/jems/750
Cité par Sources :