On a long range segregation model
Journal of the European Mathematical Society, Tome 19 (2017) no. 12, pp. 3575-3628
Cet article a éte moissonné depuis la source EMS Press
In this work we study the properties of segregation processes modeled by a family of equations
Classification :
35-XX, 45-XX
Keywords: Segregation of populations, free boundary problems, long-range interactions
Keywords: Segregation of populations, free boundary problems, long-range interactions
@article{JEMS_2017_19_12_a0,
author = {Luis A. Caffarelli and Stefania Patrizi and Veronica Quitalo},
title = {On a long range segregation model},
journal = {Journal of the European Mathematical Society},
pages = {3575--3628},
year = {2017},
volume = {19},
number = {12},
doi = {10.4171/jems/747},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/747/}
}
TY - JOUR AU - Luis A. Caffarelli AU - Stefania Patrizi AU - Veronica Quitalo TI - On a long range segregation model JO - Journal of the European Mathematical Society PY - 2017 SP - 3575 EP - 3628 VL - 19 IS - 12 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/747/ DO - 10.4171/jems/747 ID - JEMS_2017_19_12_a0 ER -
Luis A. Caffarelli; Stefania Patrizi; Veronica Quitalo. On a long range segregation model. Journal of the European Mathematical Society, Tome 19 (2017) no. 12, pp. 3575-3628. doi: 10.4171/jems/747
Cité par Sources :