The dynamical Manin–Mumford problem for plane polynomial automorphisms
Journal of the European Mathematical Society, Tome 19 (2017) no. 11, pp. 3421-3465
Cet article a éte moissonné depuis la source EMS Press
Let f be a polynomial automorphism of the affine plane. In this paper we consider the possibility for it to possess infinitely many periodic points on an algebraic curve C. We conjecture that this happens if and only if f admits a time-reversal symmetry; in particular the Jacobian Jac (f) must be a root of unity.
Classification :
37-XX, 32-XX
Keywords: Dynamical Manin–Mumford problem, polynomial automorphisms of the plane, dynamical heights, arithmetic equidistribution, non-Archimedean dynamics, non-uniform hyperbolicity
Keywords: Dynamical Manin–Mumford problem, polynomial automorphisms of the plane, dynamical heights, arithmetic equidistribution, non-Archimedean dynamics, non-uniform hyperbolicity
@article{JEMS_2017_19_11_a4,
author = {Romain Dujardin and Charles Favre},
title = {The dynamical {Manin{\textendash}Mumford} problem for plane polynomial automorphisms},
journal = {Journal of the European Mathematical Society},
pages = {3421--3465},
year = {2017},
volume = {19},
number = {11},
doi = {10.4171/jems/743},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/743/}
}
TY - JOUR AU - Romain Dujardin AU - Charles Favre TI - The dynamical Manin–Mumford problem for plane polynomial automorphisms JO - Journal of the European Mathematical Society PY - 2017 SP - 3421 EP - 3465 VL - 19 IS - 11 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/743/ DO - 10.4171/jems/743 ID - JEMS_2017_19_11_a4 ER -
%0 Journal Article %A Romain Dujardin %A Charles Favre %T The dynamical Manin–Mumford problem for plane polynomial automorphisms %J Journal of the European Mathematical Society %D 2017 %P 3421-3465 %V 19 %N 11 %U http://geodesic.mathdoc.fr/articles/10.4171/jems/743/ %R 10.4171/jems/743 %F JEMS_2017_19_11_a4
Romain Dujardin; Charles Favre. The dynamical Manin–Mumford problem for plane polynomial automorphisms. Journal of the European Mathematical Society, Tome 19 (2017) no. 11, pp. 3421-3465. doi: 10.4171/jems/743
Cité par Sources :