Conical structure for shrinking Ricci solitons
Journal of the European Mathematical Society, Tome 19 (2017) no. 11, pp. 3377-3390.

Voir la notice de l'article provenant de la source EMS Press

It is shown that a shrinking gradient Ricci soliton must be smoothly asymptotic to a cone if its Ricci curvature goes to zero at infinity.
DOI : 10.4171/jems/741
Classification : 53-XX, 58-XX
Keywords: Shrinking Ricci soliton, asymptotically conical
@article{JEMS_2017_19_11_a2,
     author = {Ovidiu Munteanu and Jiaping Wang},
     title = {Conical structure for shrinking {Ricci} solitons},
     journal = {Journal of the European Mathematical Society},
     pages = {3377--3390},
     publisher = {mathdoc},
     volume = {19},
     number = {11},
     year = {2017},
     doi = {10.4171/jems/741},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/741/}
}
TY  - JOUR
AU  - Ovidiu Munteanu
AU  - Jiaping Wang
TI  - Conical structure for shrinking Ricci solitons
JO  - Journal of the European Mathematical Society
PY  - 2017
SP  - 3377
EP  - 3390
VL  - 19
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/741/
DO  - 10.4171/jems/741
ID  - JEMS_2017_19_11_a2
ER  - 
%0 Journal Article
%A Ovidiu Munteanu
%A Jiaping Wang
%T Conical structure for shrinking Ricci solitons
%J Journal of the European Mathematical Society
%D 2017
%P 3377-3390
%V 19
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/741/
%R 10.4171/jems/741
%F JEMS_2017_19_11_a2
Ovidiu Munteanu; Jiaping Wang. Conical structure for shrinking Ricci solitons. Journal of the European Mathematical Society, Tome 19 (2017) no. 11, pp. 3377-3390. doi : 10.4171/jems/741. http://geodesic.mathdoc.fr/articles/10.4171/jems/741/

Cité par Sources :