Conical structure for shrinking Ricci solitons
Journal of the European Mathematical Society, Tome 19 (2017) no. 11, pp. 3377-3390
Cet article a éte moissonné depuis la source EMS Press
It is shown that a shrinking gradient Ricci soliton must be smoothly asymptotic to a cone if its Ricci curvature goes to zero at infinity.
Classification :
53-XX, 58-XX
Keywords: Shrinking Ricci soliton, asymptotically conical
Keywords: Shrinking Ricci soliton, asymptotically conical
@article{JEMS_2017_19_11_a2,
author = {Ovidiu Munteanu and Jiaping Wang},
title = {Conical structure for shrinking {Ricci} solitons},
journal = {Journal of the European Mathematical Society},
pages = {3377--3390},
year = {2017},
volume = {19},
number = {11},
doi = {10.4171/jems/741},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/741/}
}
TY - JOUR AU - Ovidiu Munteanu AU - Jiaping Wang TI - Conical structure for shrinking Ricci solitons JO - Journal of the European Mathematical Society PY - 2017 SP - 3377 EP - 3390 VL - 19 IS - 11 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/741/ DO - 10.4171/jems/741 ID - JEMS_2017_19_11_a2 ER -
Ovidiu Munteanu; Jiaping Wang. Conical structure for shrinking Ricci solitons. Journal of the European Mathematical Society, Tome 19 (2017) no. 11, pp. 3377-3390. doi: 10.4171/jems/741
Cité par Sources :