Geometric Eisenstein series: twisted setting
Journal of the European Mathematical Society, Tome 19 (2017) no. 10, pp. 3179-3252.

Voir la notice de l'article provenant de la source EMS Press

Let G be a simple simply-connected group over an algebraically closed field k, and X a smooth connected projective curve over k. In this paper we develop the theory of geometric Eisenstein series on the moduli stack BunG​ of G-torsors on X in the setting of the quantum geometric Langlands program (for étale Ql​-sheaves) in analogy with [3]. We calculate the intersection cohomology sheaf on the version of Drinfeld compactification in our twisted setting. In the case of G = SL2​ we derive some results about the Fourier coefficients of our Eisenstein series. For G = SL2​ and X=P1 we also construct the corresponding theta-sheaves and prove their Hecke property.
DOI : 10.4171/jems/738
Classification : 11-XX, 14-XX
Keywords: Geometric Langlands program, Brylinski–Deligne extensions, covering groups, quantum geometric Langlands program, Eisenstein series
@article{JEMS_2017_19_10_a8,
     author = {Sergey Lysenko},
     title = {Geometric {Eisenstein} series: twisted setting},
     journal = {Journal of the European Mathematical Society},
     pages = {3179--3252},
     publisher = {mathdoc},
     volume = {19},
     number = {10},
     year = {2017},
     doi = {10.4171/jems/738},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/738/}
}
TY  - JOUR
AU  - Sergey Lysenko
TI  - Geometric Eisenstein series: twisted setting
JO  - Journal of the European Mathematical Society
PY  - 2017
SP  - 3179
EP  - 3252
VL  - 19
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/738/
DO  - 10.4171/jems/738
ID  - JEMS_2017_19_10_a8
ER  - 
%0 Journal Article
%A Sergey Lysenko
%T Geometric Eisenstein series: twisted setting
%J Journal of the European Mathematical Society
%D 2017
%P 3179-3252
%V 19
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/738/
%R 10.4171/jems/738
%F JEMS_2017_19_10_a8
Sergey Lysenko. Geometric Eisenstein series: twisted setting. Journal of the European Mathematical Society, Tome 19 (2017) no. 10, pp. 3179-3252. doi : 10.4171/jems/738. http://geodesic.mathdoc.fr/articles/10.4171/jems/738/

Cité par Sources :