Cocenters and representations of affine Hecke algebras
Journal of the European Mathematical Society, Tome 19 (2017) no. 10, pp. 3143-3177
Voir la notice de l'article provenant de la source EMS Press
In this paper, we study the relationship between the cocenter and the representation theory of affine Hecke algebras. The approach is based on the interaction between the rigid cocenter, an important subspace of the cocenter, and the dual object in representation theory, the rigid quotient of the Grothendieck group of finite-dimensional representations.
Classification :
20-XX, 22-XX
Keywords: Affine Hecke algebra, cocenter, density theorem, trace Paley–Wiener theorem
Keywords: Affine Hecke algebra, cocenter, density theorem, trace Paley–Wiener theorem
@article{JEMS_2017_19_10_a7,
author = {Dan Ciubotaru and Xuhua He},
title = {Cocenters and representations of affine {Hecke} algebras},
journal = {Journal of the European Mathematical Society},
pages = {3143--3177},
publisher = {mathdoc},
volume = {19},
number = {10},
year = {2017},
doi = {10.4171/jems/737},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/737/}
}
TY - JOUR AU - Dan Ciubotaru AU - Xuhua He TI - Cocenters and representations of affine Hecke algebras JO - Journal of the European Mathematical Society PY - 2017 SP - 3143 EP - 3177 VL - 19 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/737/ DO - 10.4171/jems/737 ID - JEMS_2017_19_10_a7 ER -
Dan Ciubotaru; Xuhua He. Cocenters and representations of affine Hecke algebras. Journal of the European Mathematical Society, Tome 19 (2017) no. 10, pp. 3143-3177. doi: 10.4171/jems/737
Cité par Sources :